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ABSTRACT

This technical report summarizes the image understanding, image
processing, and smart sensor research activities performed by the USC
Image Processing Institute during the period of 1 October 1978 through
31 March 1979 under contract number F-33615-76-C-1203 with the
Advanced Research Projects Agency, Information Processing Techniques
Office, and monitored by the Wright-Patterson Air Force Base, Dayton,
Chio.

The research program has, as its primary purpose, the development
of techniques and systems for understanding images. Methodologies
range from low level image processing principles, smart sensor CCD LSI
circuit design, up to higher 1level symbolic representations and g

relational structure manipulations.




PROJECT PARTICIPANTS

Project Director Affiliation
Harry C. Andrews Computer Sciences & Electrical
Engineering
william K. Pratt Electrical Engineering
Research Staff aAffiliation
Ramakant Nevatia Computer Science
Keith E. Price Image Processing Institute
Alexander A. Sawchuk Electrical Engineering
Timothy C. Strand Image Processing Institute
Visiting Scientist Affiliation
Jean-Francois Abramatic I.R.I.A. - FRANCE '
]
Support Staff
Ted Bleecker Mary Monson ’
Gary Edwards Michael Muha
John Horner Ray Schmidt |
Eileen Jurak James Tertocha
Hilda Marti Thomas Tertocha
1Toyone Mayeda amy Yiu
Charles McManis

aij=




Ahmad Armand
Behnam Ashjari
K. Ramesh Babu
Bir Bhanu
Chung-Ching Chen
Peter Chuan

Fabrice Clara

Students

David Garber
Chung-Kai Hsueh
Kenneth I. Laws
Sang Uk Lee

Chun Moo Lo

Howard Shao
Felicia Vilnrotter




TABLE QE CONTENTS
Page
RESCAFCh OUVELVIEW o v s ae s s s estosaasssessssssssassissssisssanes L

Image Understanding Projects
2.1 Decorrelation Methods of Texture Feature Extraction

- William K. Pratt and Olivier D. FaugerasS....eeeeeeeeee. 3
2.2 Stochastic Texture Characterization

=i Kenne R E Sl g S o e e o e e e Uellatelie e alalslle ararn tora e (acie 5o e o o a0 DT
2.3 Describing Natural Textures

- Ramakant Nevatia, Keith Price and Felicia Vilnrotter.. 29
2.4 Supervised Classification with Singular Value

Decomposition Texture Measurement

- Behnam Ashjari and William K. Pratt....cccececeecceces 52
2.5 Use of Linear Features in Road Detection

- K. Ramesh Babu and Ramakant Nevatia......eeceeeeeeeeeee 62 H

2.6 Model Matching and Acquisition of Images
= KBt PElCe el ie s el eroiners sties siviessis 5os mes s esdss s G

Image Processing Projects
3.1 Two-Dimensional Small Generating Kernel Convolution

- William K. Pratt, Jean-Francois Abramatic and

SANG  UR E€O s sun s i o ses sie vovaess ess essemdsees ouessssivs - 16

3.2 Wiener Image Restoration Condition Number

- Sang Uk Lee and William K. Pratt..cccceceescceccceaccnee 85
3.3 Estimation of Blurred Image Signals with Poisson Noise

= Chun Moo Lo and Alexander A. SawChuK..:.:ieeeeeeeneenes 90
3.4 The Quality of MAP Restoration Filter for Poisson Noise

- Chun Moo Lo and Alexander A. Sawchuk......ceeeeeeees..105
3.5 An Approach of A Posteriori Image Restoration

- David D. Garber and John B. MOIrtON....seeeeeeneeaneeeasll8
3.6 Errors in Polar Coordinate Sampling

= Yeh=Hua Peter ChUAN.esvevsnevovssvsvssvsvssssvsensssssidb

-iv-




3.7 Reconstruction of Rotating Targets
— Yeh-Hua Peter ChUBN .. o, ualeiaiannsasassisssiassssssssassasbdd

Smart Sensor Projects
4.1 Implementation of Advanced Real-Time Image Understanding
Algorithms
- G.R. Nudd, PB.2. l'ygaard, S.D. Fouse
and B. R NUSEMETEE o il siaie sl e iosise s ossn o ss sissmsseelo0

Recent Institute Personnel PublicationS....cceeecocecccccceasa2ld

—V—




1. Research Overview

This document presents results of research over the past six
months at the USC 1Image Processing Institute. Research has been
devoted to 3 major areas: image understanding, image processing, and
smart sensor design. These areas are abstracted below.

Image Understanding Projects

The image understanding projects investigated during the past
research period fall into two categories: texture analysis and image
analysis. Pratt and Faugeras report on a method of texture feature
extraction in which an image is first decorrelated, and large area
spatial moments are formed as texture features. Laws presents an
extension of this work concerned with an investigation of generalized
spatial operators performing pseudo-decorrelation. A method of
structural texture description based upon an edge representation of an
image field is presented by Nevatia, Price, and Vilnrotter. Ashjari
and Pratt discuss texture feature extraction from another viewpoint in
their report of the use of singular values of a texture field as

texture vector components.

Babu and Nevatia describe the use of linear features derived from
image edges as a means of detecting roads in aerial imagery. Price
reports on another image analysis project involving model matching at
the symbolic level.

Image Processing Projects

The image processing projects reported during the research period
are concerned with image processing system architecture, image
restoration, radar image formation, and computer holography.

Fratt, Abrematic, and Lee describe a novel architecture for
performing two-daimensional convolution with a minimum amount of
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hardware using the concept of sequential convolution with small
generating kernels. Lee and Pratt present an algorithm for computing
the condition number of a Wiener image restoration operator as a means
of predicting the numerical accuracy of the restoration process. Two
reports by Lo and Sawchuk describe image restoration for blurred
images subjected to Poisson sensor noise. Garber and Morton describe
a method of a posteriori image restoration. Chuan presents two
reports; the first 1is concerned with errors associated with data
sampling in the polar domain, and the second report is an application
of the theory involving synthetic aperture radar imaging.

Smart Sensor Projects

The Hughes Research Laboratories present a section describing
research progress on the development of smart sensors for image
processing. Hughes is presently completing construction of a new CCD
chip that performs the following functions:

3x3 Laplacian

5x5 median filter

5x5 programable weight convolver
7x7 bipolar convolver

26x26 edge detection convolver.




2. Image Understanding Projects

2.1 Decorrelation Methods of Texture Feature Extraction

William K. Pratt and Olivier D. Faugeras*

Introduction

Previous studies [1-7] have helped to establish bounds for
developing stochastic-based methods of wvisual texture feature
extraction. It has been demonstrated that second order statistical
meaures on stochastic texture fields are sufficient in the sense taat
human observers cannot distinguish between texture field pairs
differing only in third and higher order statistics. Furthermore, it
has been shown that mean, variance, and autocorrelation measures, by
themselves, are not sufficient. These results have led to a new
method of texture feature extraction based on spatial moment
measurements of a decorrelated versin of the texture field [8].

Texture Feature Extraction Method

Stochatic texture fields can be computer generated by the system
of Figure 1. An array of independent random numbers W(j,k) with
probability density P(W) is input to a spatial operator with transfer
functionO{+} to produce the correlated texture field F(j,k).

Texture fields generated by the model of Figure 1 can be
compactly specified by P(W) and C{-}. This observation has led to a
texture field description method by which F(j,k) 1is decorrelated to
estimate W(j,k) and a histogram of the decorrelated field is formed as
an estimate of P(W). The spatial operator CG{:}can be described by

measurement of the autocorrelation function

*Dr. O.D. Faugeras is with Institut de Recherche d'informatique et

a'automatique, Domaine de Voluceau, Le Chesnay, France.
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JHW  k+W

Ap(m,n) = Z Z F(u,v)F (u-m,v-n) (1)
u=j-w v=k-W

of F(j,k) computed over a (2W+l) by (2W+1l) window.

Figure 2 contains a block diagram of the exture feature
extraction method. In this system, the texture field sample is
aecorrelated by a whitening filter based on the mesured

autocorrelation function AF(m,n) or by a fixed Laplacian or Sobel
operator. A histogram P(b) for 0 < b < L-1 amplitude levels is formed
over a window of the decorrelated field and the first four moments of
the histogram, defined below, are computed.

average
L-1
bA = bP (b) (2)
b=0
deviation
L-1 o
by =| Y, (b-by)%p(b) (3)
b=0
skewness
L-1
bg = (b-b,) >2 (b) (4)
bp b=0
kurtosis

st
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£-~1
P n 14 o (5)
by, = 7 }: (b-b,) P (b) -3
D b=0

The autocorrelation function is characterized by a set of
two-aimensional spread measures defined by

S (u,v) Z Z (m—n) (n-n )AF(m.n) (6)

m=0 n=-T

where
T T
=2 2 ma(m,n) (7)
Hl=. =..
T ¥
2 Pu iy
nAF(m,n)
m= 0 n=.p
Evaluation

The decorrelation method of texture feature extraction previously
described has been evaluated by measurement of the Bhattacharyya
gistance of texture features measured on pairs of the Brodatz [9]
natural texture fields of Figure 3. The B-distance measure is

N L,+L,7-1 |2(z +2,) |
BiSysig) & §ioRor =S (4;-u,) +3in m (9)
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where u. and 3, represent the feature mean vector and the feature

covariance matrix of the classes, respectively. For equally likely '
F | texture field pairs, a B-distance of 4 or greater corresponds to a 1
classificaton error bound of about 1%.

In the experiments, the Brodatz texture fields have been
subdivided into 64 non-overlapping prototype regions of 64x64 pixels.
Texture features have been extracted from each region and formed into
a texture feature vector. Next, the mean and covariance of the
feature vector have been computed and substituted into eq.(9) to
obtain the B-distance for pairs of prototype fields. 1In order to
create a stringent test, the natural texture fields have been
normalized to zero mean and unit standard deviation by independent
point-by-point 1linear re-scaling. This operation insures that
luminance bias and contrast differences between the texture pairs do
not influence the discrimination.

Table 1 contains a 1listing of B-distances for three texture
feature sets that measure the shape of the autocorrelation function of
each prototype field for 20 spatial lags in each <coordinate. With
feature set 1, containing four features, the B-distances of the
natural texture fields range from 8.70 to 1.49 corresponding to

classification error bounds from about near zero to 11%. The
B-distances are much smaller for feature sets 2 and 3 employing two
features and one feature, respectively. The B-distance measurements
of Table 1 inaicate that autocorrelation shape features of texture
fields, by themselves, are marginally adequate for the natural texture
fields investigated.

Table 2 contains listings of B-distances for texture features
consisting of histogram moments of decorrelated texture fields using
whitening, Laplacian, and Sobel decorrelation operators. For the
whitening operator, the average distance for the natural texture pairs
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Table 1

Bhattacharyya Distance of Texture Feature Sets for Prototype

Texture Fields Autocorrelation Features

FIELD PAIRS SET #1 SET #2 SET #3
GRASS SAND 5.05 4.29 2.92
GRASS RAFFIA T 07 5.32 357
GRASS WOOL 2.37 Q.21 0.04
SAND RAFFIA 1.49 0.58 0.35
SAND WOOL 6.55 4.93 3.14
RAFFIA WOOL 8.70 5.96 3518
AVERAGE 5.2k 3.55 2.30

SET #1: s(2,0), s(o0,2), s(1,1), s(2,2)

SET #2: s(1,1), s(2,2)

SET #3: §(2,2)
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is quite large when all four moment features are utilized, but some
texture pairs, e.g. grass-raffia, exhibit small distance. There is

relatively little drop in B-distance when only the third and fourth
order histogram moments, bS and bK’ are used. This is to be expected
since the whitened texture fields have been forced to zero mean and
unit variance by the whitening operator. Use of only the kurtosis

gives small distances.

With a Laplacian decorrelation operator, the B-distances of
Table 2 are somewhat lower on average than for a whitening operator.
However, there are some anomalies. Compare, for example, the

grass-raffia distances for whitening and Laplacian decorrelation.

Decorrelation with the Sobel operator, as indicated 1in Table 2,
gives quite large B-distances for natural textures wusing four
histogram moments. Since the Sobel operator output is unipolar, the
mean and standard deviation moments are meaningful, and in fact,
contribute significantly to the B-distances. 1In the worst case of the
grass-raffia pair, the B-distance of 2.20 éorresponds to a
classification error bound of about only 5% using feature set 1.

The conclusions obtained from Table 2 are that histogram moment
features of decorrelated texture fields, by themselves, provide a
reasonably good means of discriminating the natural texture fields
investigated. The whitening operator is superior, on the average, to
the Laplacian operator in terms of distance. But, the Sobel operator
yields the largest average and largest minimum distances. This is
particularly interesting since use of the Sobel operator obviously
obviates the need to compute the autocorrelation function and generate
the whitening filter.

Table 3 lists the B-distances obtainable using a hybrid feature
set of autocorrelation shape and histogram moment features. 1In all
cases, the B-aistances are larger than obtained using only
autocorrelation shape or histogram moment features.
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The previous results seem to indicate that the histogram of a
decorrelated texture field provides a substantial amount of
information for texture discrimination. But, how important 1is the
decorrelation process? What performance could be achieved if no
decorrelation were to be performed, and the histogram were made
directly on the texture field? Table 4 provides some answers to these

questions.

Table 4 contains B-distances obtained with four histogram moment
features using whitening, Laplacian, and Sobel decorrelation operators
and with no decorrelation at all. This data, presented in the first
four columns of Table 4, has been obtained by processing texture
fields normalized to zero mean and unit standard deviation. The
results show that, without decorrelation, fairly large B-distances can
be obtazined for most of the natural texture field pairs. Thus, the
first order histogram of a texture field seemingly provides
information important for texture discrimination. But, is this really
so? Probably not, because the first order histogram of an image is
aependent upon luminance point response of the 1imaging system in
addition to the point reflectivity of the texture object. It is
possible to nonlinearly scale the prototype texture fields such that
their histograms are all identical. Yet the fields will retain visual
texture differences. The B-distances obtained using such images as
prototypes are presented in the last four columns of Table 4. It is
observed that the B-distances for no decorrelation have become
extremely small as expected, but the distances for the othet
aecorrelation operators are not affected nearly so much. Moreover,
the whitening operator yields the largest average and largest minimum
distance. Thus, the justification for the decorrelation operation is
strongly enforced.

Summary and Conclusions

A stochastic model of texture field generation has 1led to the
development of a texture feature extraction technique. The method is
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based on representation of the autocorrelation function of a texture
field plus the gray scale histogram of a decorrelated version of the
texture field. Feature repesentation is in terms of shape measures of
the autocorrelation function and moments of the histogram. The
feature vector so obtained has been evaluated by Bhattacharyya
aistance measurements. Testing with prototype texture fields
indicates that large Bhattacharyya distances can be obtained between
texture field pairs with the stochastic~based feature extraction

methoad.
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2.2 Stochastic Texture Characterization

Kenneth 1. Laws

Visual textures arise from many sources. Cellular textures are
composed of repeated similar elements called primitives. Examples are
leaves on a tree or bricks in a wall. Other texture types include
fiow patterns, fiber masses, wood grains, and stress cracking. A
complete analysis of any texture would require modeling of the
underlying physical structure.

The human visual system, however, is capable of discriminating
and classifying all of these textures. It is obvious that spontaneous
recognition does not require built-in models of physical texture

generators, although such models may be used by trained observers.

The eye must use the same feature extraction methods on each
texture field, regardless of its source. We do not know what these
methods are, although there is indirect evidence that edge detection
is involved. We do know that any retinal transform must retain enough
information to distinguish different textures (as identified by human
observers). Information which would distinguish equivalent textures

must be suppressed or ignored.
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The chief characteristic of texture is shift-invariance.
Perception of a texture does not change as its position on the fovea
changes. This seems to be the very definition of a texture field: an
image which 1is not significantly changed by shifting. A region or

object, on the other hand, is position dependent.

Textures are often composed of identifiable sub-regions. Texture
perception 1is not invariant to all rearrangements of these regions.
Whether an image 1is seen as & wuniform texture field or as an
arrangement of regions seems to depend on two factors: scale and
discontinuity. Large regions with closed boundaries are seen as
separate objects. Small regions with indistinct edges are seen as a
texture field.

We shall define texture to be that which remains constant as a
window (or fovea) is moved across an image. This presupposes that the
image is a single texture field. The definition does not explicitly
include the closed boundary effect, but does include the resolution

ambiguity: texture may change as a function of window size.

There is another ambiguity in the common meaning of texture. Let
two texture fields be identical except for a difference in luminance.
Most observers will say that the textures are identical, although the
two fields are easily distinguished. Similar results will be obtained
with texture fields differing in contrast, color, size, rotation, or
geometric warp. Texture is thus perceived to be invariant to changes
in illumination or camera position.

We shall consider all of these differences to be differences in
texture, although ones which are easily measured or compensated.
Experimental work for this study uses monochrome images quantized to
have nearly uniform gray-level histograms. This compensates for any
differences 1in illumination, sensor type, or film developing
parameters. We will also attempt to measure and adjust for camera
orientation parameters, although it is not clear whether these differ




from texture parameters.

Structural and statistical approaches to texture description have
been proposed. Structural methods first locate primitive regions,
then analyze the spatial relationships. This requires that the
texture have identifiable primitives, and that the vision system be
able to determine which primitives are present. This is probably the
correct way to analyze regions and objects, but is too
knowledge-dependent for a preliminary texture segmentation system.
The most promising general approaches measure the relationships
between edge elements or small regions. This is similar to the

statistical approach described below.

Texture is both spatial and statistical. It 1is spatial since
texture 1is the relationship of groups of picture elements. Nothing
can be learned about texture from an isolated pixel, or from a
histogram of pixel values. Monotonic transformations leave texture
largely unchanged. This is why we are able to wuse histogram

equalization.

Texture perception is largely unchanged by random variation in
the shape, orientation, structure, or relative position of texture
elements. While it is true that a highly regular texture <can be
disrupted by the introduction of a few irreqularities, irregular
textures are nearly immune to noise or variation. It seems that
variability is an important texture dimension, and that changes in
other texture measures must be interpreted relative to variability.

Statistical features are non-spatial. The most powerful and
appropriate statistics for a particular type of texture are those
which estimate parameters of the generating process. A general vision
system, however, must use features which are common to many types of
texture. One way to find such features is to model the human visual
system. We have yet to develop a system which works as well. 1If we

find such a system, however, we can undoubtedly improve upon it for
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particular applications.

Natural texture dimensions can also be discovered by studying
homogeneous texture fields. Each field contains variation inherent to
that texture type. Different fields have different types of
variation. Discriminant analysis is an appropriate tool for
iaentifying the significant variations. It is only necessary that we
propose a set of texture measures; the analysis determines which
combinations are useful.

Traditicnal Texture Measures

There is good evidence that the human visual system does not
respond to spatial dependencies of higher than second order. The
relationship between any two pixels may be significant, but their
joint relationship with any third pixel in an image field is not.
This suggests the autocorrelation function as a matrix of texture
descriptors. Unfortunately the autocorrelation function is very
similar for most images. It 1is neccessary’  to consider large lag
values before significant differences occur. These differences tend
to be regula;iy spaced regions of high correlation energy
corresponding to repetition frequencies within the texture fields.
Such pockets of energy are not easy to identify and analyze. About
the best which can be done cheaply is to describe the correlation
function by its first few spatial moments. Clearly this method will
have 1little power unless correlations are measured over very large
windows. This would be 1inappropriate in image analysis, since
relatively small regions of texture must be identified.

One way to gather the significant energy 1in the correlation
function 1is to compute its Fourier transform. Equivalently, one may
transform the original image window, discarding the phase information.
Although this takes a 1large amount of computation, moving window
transforms may be updated without too much trouble. The chief
difficulty with transform methods is that they must be computed over




large windows. Small window transforms reveal only high-frequency
information, negating the theoretical justification of the transform.
Further, single frequencies are seldom important or reliable. The
spectrum may be reduced to a smaller number of features by computing
the cepstrum, or Fourier transform of the spectrum. Another way to
extract significant energy is to compute moments of the spectrum.

The co-occurrence matrix measures more general second-order
properties. It is an estimate of the joint probability density
function for pixels separated by a particular row and column shift. A
diffierent matrix must be computed for each of several row and column
shifts, although there is some reduction if rotational isotropy can be
assumed. For texture segmentation by image classification, each of
these matrices must be computed around each image pixel. It 1is not
feasible to compute full 256x256 co-occurrence matrices for an 8-bit
image. 1Images are typically requantized to 16 levels before 3joint
probabilities are estimated. This 1leads to poor performance on
low-contrast textures. The co-occurrence matrices must also be
reduced to a reasonable number of features. This is best done by
computing moments around the matrix diagonals. Many weighted moments
have been suggested, but none has yet proven effective.

It has been seen that spatial moments are a good way to measure
the distribution of energy in a correlation, spectral, or
co-occurrence matrix. Spatial moments can also be used to measure
texture directly, as described below.

Spatial Moments

Since texture is a locally spatial phenomenon, we must use local
spatial operators to generate our feature planes. Computation of
spatial moments is equivalent to multiplying an image window by a mask
and then summing. This is exactly what is done in convolution. It
seems reasonable to convolve small spatial moment masks with an image
to produce a set of feature planes. Then statistical measures can be
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computed over large moving windows in each plane. These measures form
the texture features for the point at the center of each large window.

The spatial moments of a local window are

Mij = (1/N) 2: z: rich(r,c) (1)
X c

where N is the number of pixels in the window, r and ¢ are row and
column indices, and I(r,c) is the image function. It is assumed that
row and column indices are relative to the window center, and that the

computed moments are assigned to this center point as a feature
vector.

When spatial moments are computed over a probability density,
such as a co-occurrence matrix, it is desirable to relate higher
moments to the center of the probability mass, (M 5/Myp /My /Myg) . For
instance,

Myo (1/N) Z Z (r-Mlo/Moo)zI(r,c)

r C

I

(2)

2
M507M7 0 Moo

For small image windows, however, this standardization makes 1little
difference. It 1is not worth the extra computation, and may not even
be appropriate.

Other types of standardization may be more useful. We can make
our texture measures invariant to the affine transformations
r' = sr + u, ¢' = tc + v by dividing the higher moments by the row and
column standard deviations,-@ﬁT;67ﬁggr andvqﬁng7ﬁggf. This removes
the effect of camera zoom or texture coarseness. Other geometric
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warps can be removed by standardizing with respect to the row and
column correlation.

Rotational invariance can also be achieved. Suppose that the
image texture has a dominant direction, such as a gradient or major
Fourier component direction. Let the camera or texture field be
rotated through an angle A, and let a = cos(A), b = sin(A). The new
moments can be computed from the original window as

M..(A) = (1/N) Z Z (ar+bc) * (-br+ac)II(r,c) (3)

1] r (o
Haralick computes several features of this form to measure energy
along co-occurrence matrix diagonals. Using the binomial expansion it
can be seen that these moments are linear combinations of the M, ..

1]
For instance,

e 3 .2
M) (B) = -abM, +(a-b")M  +abM (4)

02

Haralick and other investigators have also suggested that spatial
moments be computed over non-linear functions of the co-occurrence
probabilities. These can be duplicated as closely as desired by

combinations of the spatial-statistical moments to be introduced
later.

Statistical Moments

A texture field is an extended entity composed of repetitions of
similar local primitives. We require, therefore, global measures of
local properties. These global measures must be statistical since
they must be shift-invariant and insensitive to random texture
variations. They should also be easy to compute since large windows

are involved.




The set of statistical moments are particularly good global
measures. Consider a window placed on an image, or on any feature
plane computed as a transform of the image. One 1likely texture
measure is the average value of the feature within the window.
Another is the standard deviation of the feature. Skewness and
kurtosis are also good candidates, although somewhat harder to
explain. It is known that the histogram of an 8-bit feature plane can
be completely characterized by a set of 256 such statistics.
Statistical moments above the fourth, however, are 1likely to be
unreliable and to have little energy or importance. Initial results
suggest that even the skewness and kurtosis are of little use.

The basic statistical moments of a window are

M= (1/N) IS e T (5)
X (o

It is convenient, however, to standardize thé higher moments to remove
the effect of mean and standard deviation. The statistics used in our
study are of the form




AVE = Ml (63)
SDV = /(MZ—MIE) (6b)
SKW = (M.-3(M.*M_)+2(M,>))/SDV> (6¢)
3 P2 =l
2 4 4
KRT = [(M4—4(M1*M3)+6(M1 *M2—3(Ml ))/SDV~1-3.0 (64d)

The kurtosis has been reduced by 3.0 so that a Gaussian distribution

will have zero skewness and kurtosis.

Computation of the four moments at every picture point can be
done 1in a single pass. On our PDP-10KL this takes two minutes for a
512x512 image, regardless of the moving window size. The number of
image rows which must be kept in core is equal to the number of rows
in the window. Each pixel is examined only twice, once as it enters

the moving window and once as it leaves.

Experimental Results

Two sets of textures have been used to test the discriminating
power of these features. The first set consists of the Brodatz
pictures of grass, raffia, sand, and wool. These pictures were chosen
for their strong, uniform structures and for their similarity. They
have been made more similar by histogram equalization. The second set
includes the first and the Brodatz pictures of bark, straw,
herringbone cloth, pressed calf 1leather, water, wood, and plastic
bubbles, each histogram equalized.

Feature vectors are computed for 240 non-overlapping 32x32
windows in each picture. These vectors are then passed to the SPSS




analysis system, where discriminant analysis 1is performed. The
analysis 1involves stepwise inclusion and deletion of features to
identify significant eigen-dimensions in the feature space. Each
feature 1is adjusted to have zero mean and unit standard deviation
across the total population of sample vectors. This corresponds to a
Fisher 1linear discriminant analysis. Classification functions are
then computed from the principal texture axes. The accuracy of
classification on the training set will be reported here as the

primary quality measure for a set of texture features.

Co-occurrence features have been computed for the first texture
set. These can be wused as a reference for evaluation of later

results. Let P_ M. be the moment computed on the joint

mn ij Mij
probability matrix for row and column shifts m and n. These features
have been computed for all subscript values 0, 1, and 2. All of the
MOO features are equivalent, 1leaving 73 1independent features.
Computing time was approximately 4.5 minutes for 32x32 image blocks

requantizea to 32 levels.

Of the 73 features, only the M1l moments showed strong individual
dlscriminating power . The strongest were P22M11 and POZMll'
Discriminant analysis with all of the features identified two dominant
texture dimensions. The first may be approximated by

- - . (7a
-1.5P11M21+1.3P01M12 1.2P00M22 1.2P20M12+1 ZPOOM22 )

the second by

-2.4P10M11+1.9PllM11-1.7P01M11—1.5P10M22+1.5P20Mll (7b)
Together these provide 98% classificaticvg accuracy, which seems to be
about what a trained human observer could achieve on 32x32 blocks.
The classification errors are mainly between grass and sand.
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The same spatial moment subroutine has been used to compute 3x3
spatial moments for the first texture set. It took ten minutes to
extract 32x32 window statistics from the original image and the nine
spatial moment feature planes. We believe that a moving-window update
algorithm will reduce this to 1less than five minutes per 512x512
image. Using special techniques for low-order moments might cut this
time in half.

The most significant spatial statistics are SDV,

Wiy

M 01SKW '
lOSDV, MOlsDV, MOIKRT P

MIZSDV' MZlSKw’ MlOSKW’ and MllsKw' Conspicuously absent from this

MllKRT, ana M21SKW‘ Other strong measures are M

list are any of the AVE statistics. For 3x3 convolutions, at least,
the convolution sum is not as important as its variability.

Two dominant texture dimensions were again found. The principle
axes appear to be the same as found with co-occurrence statistics,
although the second axis is reversed in sign. These components may be
approximated by

- = (8a)
. 91MOISDV . 84}M2 lSDV . 77M115DV

and

4,.6M..SDV-4.1M,.SDV+2.4M. .SDV-2.4M

21 10 1250V (8b)

01

Notice that only SDV features are important.

The classification accuracy using these principle components 1isg
98%, the same as for co-occurrence statistics. The error pattern is
slightly different, however. Grass and sand are still confused, but
sO are wool and sand. The errors are distributed more evenly.

Another approach is to substitute 3x3 statistical moments for the
5x3 spatial moments. We have computed these texture measures for both
the first and second texture sets. The image was again sampled at 240
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non-overlapping 32x32 blocks. Computing time is 2.5 minutes for 240
non-overlapping 32x32 samples.

The strong features over the first set of four textures are
SDVSDV, SKWSDV, SDVAVE, SDVSKW, and SDVKRT. (The local operation is
mentioned first, then the global one.) Again the standard deviation
features are dominant. Classification accuracy with these features is
87%. The principle components are

1.5AVESDV-1. 5IMGSDV-. 8SDVSDV

1.7IMGSDV-1.0SKWSDV

where IMG statistics alone have no classifying power because of the
histogram equalization. The statistics do differ from window to
window, however, and may be useful in combination with other features.

Over the full set of 11 textures the strong features are SDVAVE,
SKWAVE, SDVSKW, and SDVKRT. SDVSDV, which 1is primarily an edge
measure, is much less important than for the first set of textures.
Classification accuracy drops to 84%, with the three dominant
components

-1.5SDVAVE+. 8IMGSDV~-. 7AVESDV
1.5IMGSDV-1. 3AVESDV-1.3SDVAVE+1.1IMGAVE

-1.2IMGAVE-1.1SKWAVE
Notice the relative unimportance of the skewness and kurtosis
features.
Variations of the 1local statistical features have also been

tried. Adding the 3x3 Sobel edge detector increases classification
accuracy on the first set of textures to 99%. SBLSDV and SBLAVE are

w28=
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both strong features. Normalizing each image block (to zero mean and
unit standard deviation) prior to computing local features has 1little
effect: classification accuracy drops to 98%. Use of 5x5 instead of
3x3 local statistics reduces accuracy to 82%, even with the 3x3 Sobel.

Spatial-Statistical Momen: s

The effectiveness of both spatial and statistical moments as
local texture measures suggests the use of combined
spatial-statistical moments. Let

M... = (1/N) Z E richk(r,c) (9)
ijk = &

This reduces to the spatial moments when k = 1 and to the statistical
moments when i = j = 0. It may be, however, that the joint moments
are more powerful local descriptors than the spatial and statistical
features together. We are now setting up discriminant analyses to
test this hypothesis.

2.3 Describing Natural Textures

Ramakant Nevatia, Keith E. Price and Felicia Vilnrotter*

Introduction

Many times, areas of an image are best characterized by their
texture rather than purely intensity information. Texture is most
easily described as the pattern of the spatial arrangement of
different intensities (or colors). The different textures in an image

*Felicia Vilnrotter is supported by a Hughes Aircraft Company Doctoral
fellowship.
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are usually very apparent to a human observer, but automatic
description of these patterns has proved to be very complex. We are
concerned with a description of the texture which corresponds, in some
sense, to a description produced by a person looking at the image.

Many statistical textural measures have been proposed in the past

[1-4]), therefore one can wuse some of their results indicating what
measures may be useful. Among the statistical measures which have
been discussed, and wused, are analysis of the discrete Fourier
transform to find indications of the structure [4], analysis of
L generalized gray-level co-occurence matrices [l], and analysis of the
edges (or micro-edges) in a subwindow [3]. We are not interested in
finding one texture measure which will distinguish between all regions
(this is the ultimate, but extremely difficult problem) but in finding
a texture measure to use in conjunction with many other features of
the region [9].

The work in what can be called structural texture description has
been more limited [5-7]. Maleson [5] used simple regions as the basic
elements and used relations between regions and shape properties of
the region in his analysis. Tamura et al. [6] tried to develop a set
of operators which would rate textures on several scales, comparable
to their ratings by human subjects. The proposals of Marr [7] for
texture analysis based on the primal sketch are similar to some of the

analysis which we perform.

Analysis of Texture

One of the most striking patterns seen in aerial 1images of a
certain scale is the regular street or housing pattern of many cities

(see Fig. 1). The appearance of this regularity 1is its most

distinguishing characteristic, and because the pattern is so clear in
| the image it shoula be easy to extract. An obvious method to extract
i this regular pattern is the use of a 2-dimensional discrete Fourier

transform. We computed this for various subwindows from the image in




Fig. 1 and other images (subwindows are given in Fig. 2). 1In the
Fourier transform results shown in Fig. 3 there is some indication of
the reqular structure 1in the wurban area windows, but it is not as
apparent (visually) as it is in the image. Other attempts to derive
much of the structural information from the Fourier transform were
only partially successful (4], so we felt other methods should be
attempted.

The individual textural elements could be located and analyzed
{5, but the simple regions seem to be unreliable when the textural
elements are very small, which 1is the <case in the urban areas.
Another option is to analyze an edge image to find the structure. The
patterns in the original image will cause related patterns to appear
in the edge 1image, and those patterns should be more consistent and

easler to analyze than the original image data.

To study textures which are composed of small basic elements, a
small window size edge detector must be used. We are interested in
the edges between adjacent textural elements and not so much in edges
between adjacent textural patterns. The edge operator which we use
has been used successfully for other types of analysis [8]. The
operator is applied over a 3 x 3 window and generates an edge
magnitude and direction (1 of 8 directions). The direction is defined
so that the brighter side is to the right when facing in the direction
of the edge. Figure 4 shows the result of applying this operator to
each of the subwindows in Fig. 2. The edge data must be further
processed before it is in a form useable in texture analysis. Since
an edge in the 1image appears as a broad peak in the edge detector
output (the width in this case is two for a perfect step edge), the
edges must be thinned. For the experiments here a simple non-maximal
suppression was applied in 2 directions (horizontal and vertical), but
a more sophisticated suppression which considers the directions of the
edge elements coula also be applied [8].




Fig.l. Aerial View of Fig. 2. 16 Subwindows for
San Francisco Area. Texture Analysis

Fig. 3. Fourier Transforms of Fig. 4. Edge Magnitude for
Subwindows in Fig. 2. Subwindows in Fig. 2.

N T TRy Y rr—




The suppressed edge images retain the regularity of the initial
image, but now the reqularity is in the spacing of edge elements not
texture elements. A Fourier transform applied to this binary edge
image would indicate the repetitive nature of the binary image, but is
obscured by the degeneracies introduced by the binary nature of the
input. Generalized gray level co-occurrence computations [1] have
been studied for texture analysis, and were intended to indicate sizes
of textural elements 1involved in the pattern. These can be applied
more easily to a binary image than a general intensity image to
indicate the spacing of edges.

Edge Co-occurrence Analysis

Generalized gray level co-occurrence matrix analysis is a basis
for much of the statistical texture analysis. Basically, a set of
matrices are computed for a portion of the image one for each selected
spacing and angle. The entry in the matrix at row I and column J is
incremented each time the first image point has the value I and the
point at the given spacing and direction has the value J. Usually the
image values are partitioneu into a small set of values (8 rather than
256), so that it is even possible to compute the initial matrix. Also
the computation is applied for many spacings (1,2,3,8, etc.) and
several directions (0945990%%etc.) as shown in Fig. 6. Because of
the large number of large matrices that are generated by this method
various measures are computed on the matrix wvalues, and the
classification is performed using these measures [l]. The common and
useful measures do not seem to capture the important feature in the
edge images: the regular spacing of edge elements, but this is

available in the co-occurrence matrix itself.

When binary edge images are used for co-occurrence analysis, many
simplications in the computation can be made. We will use a 1 to
indicate an edge at a given point, and 11 to indicate edges occurring
at both the first point and the second point which is at some distance
and angle from the first. The edge/no edge pair is indicated by 10
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and no edge/edge by Ul. Finally 00 means no edges at either point.

The 1lU and 0l combinations mean the same thing in terms of the image
ana thus are combined. The most important numbers are the 11 totals.
The absolute magnitude is not very meaningful since this depends on
the total number of edges and on the spacing being used (within a
given image there are more opportunities for a co-occurrence edges
with a small spacing than a large spacing) in addition to the actual
frequency of occurrence of 11's. One good way to normalize the
numbers seems to be to use the total of 10, 01, and 11. This gives
the proportion of potential edges for co-occurrence that actually
co-occur. We computed these values for 4 directions and spacings from
2 to 32 (at 45° ana 135° a spacing of 2 is plotted at a distance of
2/2). Some of these results are given in Fig. 7.

There are several ways to compare edges at two points, with
different features indicated by the different comparison methods.
Using all edges for every direction presents severe problems 1in the
analysis of the output since long lines running in the same direction
as the co-occurrence computation will be included along with 1lines
running perpendicular to the direction. (Tamura et al. [6] used this
feature to determine linear patterns in their texture experiments.)
But, the edge element directions are availalbe and can be used to
separate these two different patterns. The first step is to consider
only those edge elements perpendicular to the direction of search,
that is in the computation of co-occurrences in a horizontal direction
only vertical edges are considered. There are an almost unlimited
number of variations on this basic restriction which can either be
derived from other variations or computed in a manner similar to the
simple cases. The variations include: allow some freedom in the edge
direction (45° either way), accept only perfect matches (up and up,
down and down), accept only opposites (up and down, not up and up),
and allow some freedom in the direction of the last two. The diferent
combinations will all produce results with different information, so
that several different ones can be computed.
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Discussion

None of this analysis woula be worthwhile if it d4id not make the
job of describing regular textures any easier. The highly regular
patterns of the San Francisco urban area (the top row of Figs. 2-5 and
Fig. 7a, 7b) and raffia (the bottom row and Fig. 7c, 7d) produce
strong periodic patterns in the plot of the co-occurrence measure. A
high wvalue 1in the graphed measure indicates that edges'frequently
occur at that particular spacing. This spacing information can be
used to determine the size and spacing of the textural elements, and
the overall strength of the peak can be used to determine how regular
the pattern is.

The spacing of pairs of textural elements is given by the peak to
peak spacing using the measure which matches edges only in the exact
same direction (as in Fig. 7a,c). The size of individual elements |is
best given by the measure which allows only edges in the opposite
direction (as in Fig. 7b,d). The solid line in the graph indicates
the size of dark objects and the dotted line the size bright objects.
The size is from the first major peak, the succeeding peaks are caused
by the repeated pattern. By comparing the results from the 4
airections, the orientation of the texture can be predicted. Since
patterns wusually do not 1line up with one of the 4 directions there
will be some contribution to 2 of the directions. When these
directions are 45° apart the dominant direction is probably between
them (as in San Francisco, Fig. 7a,b). But when they are 90° apart
there shoula be a regular pattern in two directions (as in Raffia,
Fig. 7c,d). Thus, from the data we can say that the San Francisco
subwindow has a regular pattern of bright and dark regions oriented in
one direction, near 45°, with the bright regions being 1larger (width
about 1lu pixels) than the dark ones (width about 4). Note that the
size of the blocks in the other direction is near the size 1limit of
the co-occurrence computation and also that very few of the edges at
the ends of the blocks are detected.
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The irregular textural patterns (e.g.the suburban areas of the
second row of Fig. 4, and the grass and sand of the third row, first
and secona windows) do not produce the same clearly periodic patterns ;
of raffia as shown by Fig. 8a,b (for grass and suburban,
respectively). But it is possible to derive certain wuseful features
from these results, primarily that of the size of the textural
elements. The strong peak near 3 for grass and 4 or 6 for suburban f
indicates a dominant size for textural elements (in the case of ]
suburban probably 2 different sizes). The graphs indicate that the

grass has thin dark and bright textural elements, predominately

vertical and to a lesser extent, horizontal. The suburban area has
only bright regions somewhat larger. These descriptions still leave
open the question of whether the texturall elements are long and thin
or small and round. The lack of a substantial peak in the 45° or 135°
direction for grass indicates that it is probably long and thin and
the small, though readily apparent peak in the graphs for the suburban
windows indicates that the regions are probably small and round or

more likely,rectangular).

Aaditional results are shown in Fig. 9-16. The first set are
close wup views of uniform texture patterns from [10], and the second
set are aerial views of a variety of terrain. The results on these
additional texture windows show that the procedure is robust enough to
extract useful descriptors from a variety of textural patterns. There
are some unexpected similarities in the case of a water and wood
pattern (second and third rows in Figs. 9-11 and 12a,b). The edge
images are very similar and there are only minor differences in the
results of our processing. Structurally, the major differences
between the two appears to be that the wood has its edge points in
longer straight lines, a feature which may be derived through other
processing. The herringbone (bottom row) cloth pattern is dominated
by the regular pattern of the cloth and not the herringbone structure
(Fig. 1l2c¢). The farmland (top row Fig. 13-15) does not have a
repeated structure (at this resolution), so that the only results are
the dominant sizes for the fields (i.e. the textural elements) as

o
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shown in Fig. l6éa. The mountains do not have a dominant size for the
textural elements, except for some of the narrow dark (shadow) areas
(Fig. 16b). The bottom row has so few edges that it can be simply

described as a uniform region.

This is not a complete description of the textures, but serves as
a good initial description of the patterns. There are still other
important features of the textures which are not derived by this

methoda, but could be computed by other techniques.

Conclusions

General texture analysis is a very difficult problem, but this
analysis of edge images appears to be an effective method to extract
many important structural features from the textural patterns. One
major wunanswered question is whether or not all of the information
derived by the human user can be reliably derived by &a program. We
are still working on the automatic extraction of this information from
the data which is produced by this textural analysis method.
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2.4 Supervised Classification with Singular Value Decomposition

Texture Measurement

Behnam Ashjari and William K. Pratt

In a previous report [l1] on this subject, four facts about

singular values were established:

i) The singular values of a matrix are measures or descriptors of
inter-relationships of the matrix elements.

ii) The singular values can be considered measures of the pattern
variation of image texture.

iii) The SVD is not useful as a measure or feature of structure.
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iv) The singular value distribution tends toward uniformity for a
less correlated image and toward skewness for higher correlation among
pictorial data.

The above mentioned facts were supported by theoretical and
experimental results. The experiments performed were on artificially
generated, two dimensional, zero mean, unit variance, separable, first
order Markov, Gaussian random fields. It was also shown that similar
looking textural images possess relatively identical singular value

curves.

In the present study, experiments on artificial texture are
continued and also new experiments on natural texture are performed in

order to pave the way for the application of the SVD as a means for an
efficient texture measurement.

Experiments on Artificial Texture

Artificially generated, separable random fields, F, have been
usea for three sets of experiments, let

For each value of the spatial correlation o, there 1is a
corresponding generated matrix F, and for each F, there are
corresponding U, V, and uv L, By transforming the U's, V's, and their
outer products v s to pictures, it is possible to visually detect
any trend among each group.

The experiments are performed with considering different values
EOE P 1:€s5) 0:0; 00 0.55; 06y sse , 1.0. The results show that
most of the information is concentrated in the singular values rather

than in the U and V or UVT matrices.




Experiments on Natural Texture

In these set of experiments, four types of similar appearing
natural textures are chosen from the Brodatz Texture Album [2], Grass,
Raffia, Sand, and Wool. Fig. 1 shows the four texture fields. The
original data is stored in a 512 x 512 array of pixels. By performing
a "neighborhood averaging" operation on the 512 x 512 data, it |is
possible to obtain 256 x 256 and 128 x 128 version of the data. At
this stage, the goal is to determine the best window size versus
resolution. The windows are 16 x 16 or 32 x 32 non-overlapping
squares taken from the 128 x 128, 256 x 256, or 512 x 512 images.
With the help of the within class and between class plots of the
singular value distributions, it is determined that the best window
size is 32 x 32 and for the purpose of this study, the best resolution
is in the 512 x 512 array. There are 256 non-overlapping blocks of
32 x 32 windows in a 512 x 512 picture. Through a random integer
generating mechanism, 64 of the 256 possible windows are randomly
chosen. Figure 2 contains sixteen 32 x 32 sample windows for Raffia
and Wool. Each of these 32 x 32 squares has 32 singular values which,
when arranged in descending order, can be considered as elements of a
32-dimensional vector. Therefore, the prototypes consist of 64

32-dimensional vectors for each of the 4 texture images.

Histogram Modification

To avoid any sort of bias in our 4 texture images, they must have
the same mean and variance. This is achieved by subtracting the mean
value of each 512 x 512 picture from each of its elements and then
dividing the result by the standard deviation of the picture. Through
this operation, the texture images become zero-mean and unit-variance.
In order to eliminate any miscalculation due to the brightness levels
of the pixels or biases due to the background lighting at the time of
photography, a histogram Gaussianization is performed on all 4 texture

images. After performing Histogram Gaussianization on the textures, a
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i; complete homogeneity on the data is reached and any result from the
' computation is solely due to the structural inter-relationship of the

texture elements rather than unwanted biases.

Experimental Mean of Singular Value Vectors

As was previously mentioned, there are 64 32 x 32 sample windows
from the zero-mean, unit-variance, Gaussian histogram version of each
image. This, in turn, provides us with 64 32-dimensional S.V.
prototype vectors. For each texture, therefore, there is a sample or

experimental mean vector. Figure 3 shows the relative locations of

the experimental-mean-singular value vector of the 4 texture fields.

Feature Extraction

Dividing each of the 64 32-dimensional S.V. prototype vector by
the sum of 1its elements, will not change the relative size of each
elements with the other; however, the result will be 64 32-dimensional
first order S.V. histogram vector for each texture. A first order
histogram vector has the property that the sum of its elements is one,
and it can be concisely represented by its first 4 moments [3, P.472].
For a SV histogram vector S whose ith element is S(i), the first four
moments, as explained thoroughly in [4], are as follows:

Average (First moment)

32

Ml= Zis(i)

i=1

Deviation (square root of variance)

32 Y
M2 = [ Z (i—Ml)ZS(i)]
i=1

Skewness (third moment)
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The factor 3 in the kurtosis makes the kurtosis of a Gaussian

histogram zero [4].

Ml, M2, M3 and M4 features representing a SV histogrm vector can
be utilized to give 64 4-dimensional feature vectors for each texture.
From each set of these feature vectors, an experimental feature mean
vector and an experimental feature covariance matrix can be computed

for each texture field.

Evaluation of SVD Texture Measurement

In texture analysis, a set of measurements on texture is tested
according to a ‘'goodness' criteria [5]. There are two guantitative
methods for evaluaiion of statistical texture measures: the first is a
classification method which involves measurement of classification
error in classifying texture fields, and t'e cecond is the figure of
merit method, which usually involves a distance function to provide &
measure of separation between two texture classes [4]. The metric
used for distance is usually related to classification accuracy. The
larger the distance, the higher the classification accuracy.
ClassifiThe cation method of evaluation will be wused in future
experiments to verify our figure of merit evaluation. The figure of
merit technique 1is used in our experiments and will be described in

the following section.

Bhattacharyya (B-) Distance
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Using a Bayes classifier, B-distance is monotonically related to
the Chernoff bound . The Chernoff bound is an upper bound on the

probability of classification error [6].

For two classes with gaussian densities and equal likelihood, the
B-distnace 1is

1
c,+C 1, 15067y |

)
e ke o 2Pl R = 1,12 =1 =2 "
B(classl,classz) 8(31 22) [ 5 ](ﬂl m2)+82n I I
Igll l9.2‘

where, m and CJ represent feature mean vector and feature covariance

matrix of Jth class.

Table 1 contains the B-distances between 6 possible pair of the 4
cexture images; Grass, Raffia, Sand and Wool. As can be seen in the
table, Grass and Sand have the minimum distance. Hence, for this
pair, the highest probability of classification error exists, and the

Chernoff bound to this probability is about 10%.

17 M2, M3 and M4
features which gives maximum B-distance. When such a combination is

It is possible to find a combinations out of M

found, the features in the combination are the best ones to be
utilized, in our experiments, for classification.
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Table 1

Field Pairs B-Distance

Grass | Raffia 2.4790

%
Grass | sand 1.4358

!
Grass | Wool 3.6898
Raffia Sand 7.3492
Raffia | Wool 11.2446
Sand | Wool 3.8368

Bhattacharyya Distance of Texture
Deviation, Skewness,

Feature Sets for Average,

-61-

and Kurtosis.

o B




T

3. W.K. Pratt, Digital 1Image Processing, Wiley-Interscience, New
Yark, 1978.

4. O0O.D. Faugeras, W.K. Pratt, "Stochastic Based Feature
Extraction," unpublished, January 1979.

S  SUK. Abdali, "Feature Extraction Algorithms," Pattern
Rececgnition, Rergamon Press, Vol. 3, 1971, pp. 3-21.

6. K. Fukunaga, Introduction to Statistical Pattern Recognition,

Wiley-Interscience, New York, 1972.

2.5 Use of Linear Features for Road Detection

K. Ramesh Babu and Ramakant Nevatia

Previously, we have described an edge detection and line finding
technique that gives piecewise linear boundary segments [l]. Use of
these linear features for extraction of roads and similar structures
(e.g. airport runways and rivers) is described here. The described
techniques are intended to be general and may be viewed as describing
2-D generalized cones [2]. This is in contrast to special techniques
for road detection, such as in [3,4]. No attempt to compare the two
approaches has been made here.

Basically, a 2-D generalized cone may be viewed &as being bounded
by locally 1linear and 1locally parallel boundaries of opposite
orientations. We call such pairs of line segments as "anti-parallels"
or “apars”. The first step in our road detection techniques is to
compute apars of a given maximum width (known from approximate scale

of the image). The apar detection technigue has been described

st
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previously [1]. A line segment may form more than one apar with
different pairing segments.

The above process generally leads to broken fragments of a road
(and other structures), as many boundary segments are absent due to
inaaequacies of edge detection, sherp bends, road intersections and
other causes. An example of detected segments and apars from
fig. 1l(a) is shown in fig. 1(b) and l(c) respectively. Fortunately,
some of the apars can be connected to form larger fragments, utilizing
the connectivity apparent in the detected segments.

The connectivity criterion for connecting apars is that one of
the segments of the apars be part of the same chain of connected
segments, called the supersegment. In Fig. 3(a), the "curve" ABCDE is
a supersegment while AB, BC, CD and DE are segments. The apars formed
by these segments are connected and the <collection is called
"sep"-short for super antiparallel. The component apars occur in
order , i.e., €1,2,3> oer <3,2,;1>. Note tﬁat, in Fig. 2(b), all 5 apars
would be connected to form a single sap. The "color" (bright or dark)
of the apars in a sap is also recorded. Fig. 1(d) shows the resulting

saps from fig. 1l (a).

The implementation of connecting apars for display purposes is
complicated due to the presence of overlapping apars. The details are

not described here.

Results

Results of processing another image, a 2048x2048 image of the
Stockton, California area, are shown in Figs. 3(a)-(d). Note that
fig. 3(d) shows saps, not all of which correspond to roads. The
processing time to generate ordered saps is about 10% of the time

required for previous processing to compute linear segments.
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Figure 4. Detected road fragments from Fig. 1l(a)
after bridging

TN

Figure 5. Detected road fragments from Fig. 3(a)
after bridging




The detected roads in figs. 1 and 3 are fragmented. It was
observed that a large number of gaps are due to a single missing edge.
We bridge gaps between two segments if there exists a pixel between
them that could be a predecessor of one segment and a successor of the
other. Improvement in detected roads after bridging is easily
discernible, compare figures 1(d) and 4. In the Stockton image, the
results after bridging (Fig. 5) are less noticeable because of the
scale of display.
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2.6 Model Matching and Acgquisition of Images

Keith Price

This note gives the current status of a system to locate complex

structures 1in an image. Portions of the earlier wok have appeared in




previous semi-annual reports, but a complete description will appear
in a forth coming, separate USC IPI report.

This system uses both region based and edge based segmentation
techniques. The edge based method is applied to extract the prominent
linear objects. In the case of aerial images these would include
roadas, narrow rivers, etc. The region based method is used to segment
the other objects in the image, those which should be easily used to
segment the other objects represented as connected regions.
Previously, regions and 1line based segmentations had not been
effectively combined. These segments, lines and regions, are used as
the basic elements in the symbolic description of the image. The
symbolic description 1is completed by extracting features of the
segments such as size, orientation, neighbors, etc.

The user describes the scene model through a dialog with the
computer system. The various objects in the model are described in
the same terms as the segments extracted from the image. This model
is a general segment based description rather than a detailed pixel
specification such as used in [1]. Additional information may be
included in the model descriptions to account for the variability of
the image data. For example, the size of objects may be reduced by
segmentation errors, occlusions, and the location of the objects near
the edge of the image. To handle this, and other similar problems,
most features can be given as greater than (or less than) some value.
The hand to locate (or hand to describe) objects which this system is
intended to aid 1in finding are specified by the size of the object
(either absolute size, in meters, or a percentage of another known
object), and the location relative to known objects.

The automatically generated image description and the user
derived scene model are used by the matching and location program to
identify segments in the image as objects given in the model and to
determine where in the image the hand to locate objects may be found.

This model-image matching program is based on a general image-image
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matching system [2], but has several extensions to handle the special
properties of model descriptions (e.g. approximate feature values and
the fact that some features are available only for a few objects).
The matching procedure locates the segment in the image which most
closely matches the description given in the model. These
correspondences are then used by the 1location specifier for the
structures whose locations are given as areas of the image. When
these locations are known, the smaller area in the image can be

further analyzed to extract detailed information.

Figure 1 is an image to illustrate how this system performs on a
medium scale aerial image. The image is of San Francisco and covers
about 15 by 15 miles, with 3 airports which we wish to 1locate.
Figure 3 1is a sketch of the scene from which much of the information
required for the scene model can be extracted. Fig. 3 is a graph
representation of the scene which illustrates the internal description
of the model. Figure 4 shows the segmentation of the image-with
regions outlined 1in white, and 1long lines features also marked in
white. Figure 5 shows the results of applying the matching procedure,
with the matched regions and road labeled. Figure 6 has the located

areas (the airports) marked.
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Figure 4. Segmented Regions and Linear Features of
San Francisco
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3. Image Processing Projects

3.1 Two-Dimensional Small Generating Kernel Convolution

William K. Pratt, Jean F. Abramatic and Sang Uk Lee

Introduction

Small Generating Kernel (SGK) convolution 1is a processing
technique for performing convolution on two-dimensional data arrays by
sequentially convolving the array with small size convolution kernels.
The processed output of the SGK system closely approximates the output
obtained by convolution with a large kernel.

SGK Processing

Conventional discrete two-dimensional convolution 1is a linear

computation defined by

G(j,k) = F(j, k) ® H(j, k) = Z EF(m,n)H(j—m+l,k—n+l) (1)
m n

where G(j,k) is an MxM output array, F(j,k) is an NxN input array, and
H(j,k) 1is an LxL convolution kernel array called an impulse response
function. The array dimensions are related by M=N+L-1l. The number of
mgl;iplications required for conventional computation, in general, is
N°L .

In the SGK concept, the computation of eq.(l) is replaced by a
sequential convolution operation. Referring to Figure 1, let

Aq(dsk) = Aq_l(J,k) B Ky (3,k) (2)
represent the convolution output of the g-th stage of the process

where Kq(j,k) is the g-th KxK small generating kernel, (typically
3%3) . At the zeroth stage, A(j,k)=F(Jj,k). In the basic SGK

-
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convolution system, the convolution output is

G(j,k) = AQ(j,k) = (K, (5,k) & K,(j,k) @...@KQ(j,k)]@F(j,k) (3)

An alternate system, shown in figure 2, produces a convolution output

from the cumulative sum of the SGK stages. In this top ladder
configuration

Q
G(3,k) = 2, AA (5,k) (42)
=0 94
q
or equivalently
Q
G(3 k) = Z A Ky (G5,k) @ Ky(3,k) ®8...8K_ (j,k)I8F (], k) (4b)
q:O 9 q

Figure 3 contains a dual formulation, called the bottom 1ladder
configuration in which the convolution and weighting stages are
reversed in order. The cumulative formulations offer more convolution

design freedom through independent specification of the weighting
constants A .
q

The values of the Q small generating kernels Kq(j,k), and in the
case of the cumulative SGK system, the ¢ weighting constants X , are
found by an optimization procedure that seeks to minimize the ‘error
between the conventional output G(j,k) of eq.(l) and the SGK output
given by eq.(3) or (4). Techniques have been developed for mean

square error and absolute error (Chebyshev error) minimization.

With SGK convolution, & total of

(5)
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stages of SGK convolution with an KxK kernel producing the equivalent
of an LxL kernel conventional convolution. Thus, 15x15 convolution

requires 7 stages of convolution with a 3x3 SGK. The number of SGK

: . : . 2 2 . . 2
operations required 1s QK N . The saving 1in computation over

conventional convolution is by the ratio

L2N2 K-1 L2

S e = (6)
|

For the 15x15 convolution example using a 3x3 SGK, the computational
saving is by a factor of about 3.6:1.

SVD/SGK Processing

If an impulse response operation matrix H 1is orthogonally
separable such that is can be expressed in the outer product form

H=ab' (7)

where a and b are column and row operator vectors, respectively, then
the convolution operation of eq.(l) can be performed by sequential
convolution on the rows and columns of F(j,k). This reduces the
number of computations to 2NL instead of N2L2 in the two-dimensional

case.

Any impulse response operator can be expressed as a sum of

sepai able operators by &z singular value decomposition (SVD) by which

i=i=i

R
H= 2, ¢,a,b (8)
i=1




where R/(R<L) is the rank of H, wi is the i-th eigenvalue of ﬂgT(ng),
and a; and b, are the i-th eigenvectors of EET and g?ﬂ respectively.
If H is of full rank, the number of operations required to perform the
convolution 1is of the order of 2NL2. In many practical cases, the
rank R of H is much less than L, and the number of operations can be
reduced accordingly. Also, it is possible to truncate the expansion

of eq.(8) if the Y, are small.

It is possible to perform a two-dimensional SGK expansion on each
submatrix §i=§igiT of eq.(8). Another approach, shown in figure 4, is
to sequentially expand each one-dimensional operator a; and gi by the
SGK method 1into a sequence of Kxl kernels. The latter approach is
particularly attractive for two reasons. First, large kernel size
two-dimensional convolution can be performed by sequential
one-dimensional convolution with small operators, say 3xl1, resulting
in considerable savings in processing complexity. Second, there is no
approximation error associated with the one-dimensional SGK expansion,

and therefore, the convolution operation is theoretically perfect.

Experimental Results

Several experiments have been performed to evaluate the SGK
design procedure. Figure 5 contains an example of image deblurring by
conventional and SGK processing. The original image before blurring
is shown 1in figure 5a and after blurring in figure 5b. Figure 5c
shows the result of convolution with a 15x15 prototype deblurring
operation. The result of deblurring with seven stage 3x3 SGK
processing is presented 1in figure 5d. There are no observable
aifference between the conventional and SGK processing methods.

ittt
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(a) original before (b) original after
blurring blurring

\

”Q
(c) deblurring with 15x15 (d) deblurring with seven
prototype operator stage 3x3 SGK
Figure 5. Examples of image deblurrino with

conventional and SGK convolution
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Conclusions

The SGK and SDV/SGK convolution methods are attractive techniques
for simplifying the computational requirements of two-dimensional
convolution. Studies are now underway to assess the effects of

computational errors of the processing procedures.

3.2 Wiener Image Restoration Condition Number

Sang Uk Lee and William K. Pratt

In a previous paper [l], Pratt has introduced an easily computed
tormulation of the condition number of a finite length convolution
operator. operator. This formulation is extended here to the Wiener
filter operator.

Problem Statement

Assume a linear, signal-independent noise model of image
formation and recording. Also for simplicity, initial consideration

will be given to the one-dimensional overdetermined model

S SR (1)

where g and n are mxl vectors of the observed image with M=N+L-1, L is
the 1length of the impulse response length, f is a Nx1 vector of the
ideal image and H is an MxN blur matrix associated with the impulse
response h(n), for n=0,1,...,L-1.

The Wiener filter deconvolution operator for this model is [2]

i -1,-1.T,-1

T_
.I:(_ng.+§f) EEI} (2)

W=

where ﬁn and §f are covariance matrices of the noise and ideal image,
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respectively. In numerical analysis, the accuracy of the

deconvolution estimate c¢an be bounded 1in terms of the noise
pertubation n. It has been shown [3] that

g || [Inll
— = |[nf| |[w]] ™ (3)

and the condition number of Wiener filter operator is

c(w) = [[uf]{wll (4)

where ||+ || denotes matrix Euclidean norm defined as

M N .
N 2=
MDD [lhu,m] -~
i=l  j=1

Computation of W 1is not simple because of the matrix inversion

operation in eq. (2).

Pratt [1] shown that a close approximation can be obtained by
replacing the generalied 1inverse norm by the 1less restrictive

conditional inverse norm. So our problem leads to the computation of
#
llw "Il

Formulation

A finite-length operator D can be extracted from the circular
superposition operator C by use of a selection matrix according to the
relation

N M
D =
D [Sl]] C I l]J

b
(6)

. " ; K ;
where the selection matrix [Slj] is defined as
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(s151 = 11! 01l (7)

K J=K

It is easily verified that the conditional inverse of matrix D is

N = M.
pF = (5371 ¢ 81, (8)

but the generalized inverse D does not satisfy such a relation. That
is,

" M. T
] ¢ [s1 -]
e (9)

The conditional inverse norm D can be computed in terms of C
which can be computed easily by Fourier methods since C is also a
circulant matrix. Pratt shown that the conditional inverse norm EQ#H
is

oIt - X % (hw |21 At

where h(u) is the Fourier transformation of h(n), n=0,1,...,L-1.

The next step is to wuse an adjoint Wiener model, which was
proposed in the development of a fast Wiener restoration algorithm

[4] . The resulting adjoint Wiener model estimate is

A N M,T
£= (s3] v, (8l517 g (11)
and
- gl R R R ¢
LRl B ey Efx] € Kex (12)

-§T=




where gru(and gib(are extended covariance matrix of noise and ideal
image, respectively. The adjoint Wiener model operator is

i N T -1 -1,-1.T -1 M, T
Wy = [SL7lICTKLC + ey )T CKg, [S17] g

2

Assuming a white noise process with noise energyon , @a Markov process

with image energy sz'
circulant matrix, leads immediately to

and also wusing a fact that matrix > is a

Mil = Mi:l h 2

2 N D) N h (u)

W II" = [lv, (u,w) |41 = = ||—= (14)
* = W X =0 M |||hw|? + =L

ARA (1)

where h(u) is a Fourier transform of impulse response, R is the signal

to noise ratio cfz/cnz, and

(1=p2) [1=t=2)""1p"1;

5 (15)
1-2pcosB + p

A (u)

with the approximate condition number for the adjoint Wiener model
operator then becomes

cw = |lull liw, | (16)

where the norm of the condition operator is given by eq. (5) and the
norm of the condition inverse of the operator by eqg. (14).
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Figure 1. Comparison of approximated and exact condition
number for Wiener filter.
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Evaluation and Summary

Equation (16) has been evaluated and compared with an exact
condition number of the Wiener filter deconvolution operator given by
eq.(2) using the singular value decomposition formula of a previous
report [1l]. A typical result for Gaussian blur (02=1.0), M=64, N=50,
and L=15 is presented in Figure 1. Two correlation coefficients,
p=v.9, 0.1, are chosen in this experiment. As the ratio of image
energy to noise energy (cg/di) approaches infinity, the Wiener
operator norm of eq.(l14) becomes equivalent to the conditional inverse
norm of eqg.(10) as shown in Figure 1.
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3.3 Estimation of Blurred Image Signals with Poisson Noise

Chun Moo Lo and A.A. Sawchuk




Introduction

This report discusses more general, realistic, and interesting
cases of restoration which include degradations due to blurring and
Poisson noise. In many practical problems of interest, the detected
image data arises from a blurred image of the object. Examples
include 1linear motion degradation in which the object suffers
significant motion during the detection interval T, Gaussian blurring
degradations in which the detected image is seriously degraded by the
spatial and temporal fluctuations of refractive index of the
atmosphere, and aberrations, which arises in focusing error or in
inherent properties of spherical lenses. These blurring effects can
be lumped tagether as a blurring matrix H. The block diagram of this
system is shown in Fig. 1.

The formulation of MAP estimation equation and its solution is
derived in section 2. The implementation of the MAP filter with one-
and two-dimensional blurring and their experimental results will be
illustrated and discussed in section 3 and section 4, respectively.

MAP Estimation Equations with Blurring Matrix H

As derived previously [17], the estimation equation for the MAP
estimate is ’

T (g-1) -Rg " (£-E) = 0 (1)
where
a. a.
T v, & b 2)
o [ Qe s aressQul v Gy = o= & et (
4 172! L
N l] ]
J p

and
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Byg Hgg e = 77 Hin
H Hy, - - - - - H
21 22 2N
Hd and 1= [1,1,...,1]7 (3)
| a1 2 o |

Here the H matrix is not necessarily a square matrix, but depends on
the model of blurring degradation. For simplicity, we assume here
that the H matrix is square matrix.

Equation (1) is the most important key equation of MAP estimation
with a blurring matrix. The first term is the ML solution and the
second term is an a priori solution. Thus, the MAP filter tries to
balance the inverse solution with some smoothness contraint. However,
Eq. (2) is a nonlinear MAP estimate equation. The nonlinearity 1is
buried in the g function.

Due to the larger dimensionality and nonlinearity of the MAP
estimate equation it uses a sectioning method with a Newton-Raphson
technique to obtain a suboptimal solution [10,12,21]. There are two
sectioning methods, one 1is the overlap-add sectioning method, the
other is the overlap-save sectioning method. Sectioning methods
generally give rise to boundary edge effects, hence, it is necessary
to investigate which method will be applicable to this MAP estimate

equation. From equation (1), we have

. T p————




AT(g + 1) - RgI(E - F) =0 (4)
where
a.
>
q; = —— (5)
ﬁ Bty

In the overlap-add method of sectioning filtering the mth and (m+1)th
section are added together in the region of overlap to create the
final correct output. This method will be suitable only for the
linear function case. However, the convolution with H is imbedded
inside of the g function of equation (4). Since g 1is a nonlinear
function of (Hf), then

£(m)+H£(m+1)

g(u # g(H_f_(m))+g(H£(m+l}) (6)

(m) £(m+1)

k& £ belongs to the overlapped portion of a section m, and
belongs to the overlapped portion of an adjacent section m+l, then
Obviously overlap-add section method is not valid in the presence of
the nonlinear function in the MAP estimate equation. Fortunately, the
overlap-save method remains valid for the nonlinear case and can be
used in our MAP estimate equation. Since incorrect points in the
overlap region are discarded, rather than being corrected by addition,
the overlap-save sectioning method with the Newton-Raphson technigue
can reduce the boundary edge effects because it discard erroneous
processed data of the overlapped region.

Implementation of MAP filter with One Direction Blurring Degradation
and its Experimental Results

The most interesting blurring degradations are linear motion
blurring and atmospheric turbulence blurring. The linear blurring is




models as a square blurring, while atmospheric turbulence blurring is
modeled as Gaussian blurring for a long exposure time. This section
will implement the MAP filter with one directional 1linear motion
blurring case. The linear motion blurring is most general and complex
case of the blurring degradation, because its amplitude response has
singularities and phase reversal. We also assume that R¢ has 2 first
order Markovian covariance matrix.

Using the overlap-save section method with the iterative
Newton-Raphson technique obtains the solution to the MAP estimate Eq.
(4). The convergence is very fast; about 2 to 3 iterative steps. The
detailed Newton-Raphson method is described in [18]. The discrete
point spread function of h(x,y) is 5 pixels width of 1linear motion
blurring degradation. The simulation is same techniques as previous
report. The nonstationary mean is estimated by a l-dimensional moving
average on 11 pixels of observation data and its variance is estimated
globally by an unbiased estimate of population. The 1linear system
equations of gradient function of Eg. (4), which obtains increment
value of iterative roots, is heavily dependent on structure of the

blurring matrix H.

When H matrix is symmetrical matrix, the computing time of Eq.
(4) with Newton-Raphson technique can be lesser since it uses the
symmetrical properties of linear system equation. This simulation is
done with one directional linear motion blurring (5 pixels blurring)
and different (SNR) 1se
done by a section size 36 pixels with overlapping 8 pixels. The

The processing of sectional MAP filter |is

restored images of MAP filter are shown in Fig. 2 for different
(SNR)rmS. The layout of the result pictures are as follows:

The upper left picture is an original image.
The upper right picture is a Poisson noisy image.

The lower left picture is the restored image with p = 0.
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Fig. 2a. The restored image
of the MAP filter with
(SNR) o = v10.

Fig. 2b. The restored image
of the MAP filter with
(SNR) = /15.

rms




The lower right picture is the restored image with p = 0.9

From Fig. 3, it is clear that the 1ill-condition of restored
image with p = 0 more severe for the higher (§ﬁ§)rms image signal.
The reason why is more correlation between pixels for higher (SNR)rms
and the singularity of amplitude response of blurring matrix H which

amplified the Poisson noise.

For a local adaptive MAP filter, the equation is

Le-B)1 =0 (7)

W HT (g-1)]+(I-W) - [-R]
Where W = {diag Wi}‘ W is called weighting matrix. W, is the weight
1 of ith section which can be varied on the first moment and second
moment of local properties of image. The local adaptive MAP filter
also can be wused for the restoration of image degraded by spatially
variant point spread function. This has long been a problem for real
world of image processing. For instance, the point spread function of
I each photon detector is not identical in the whole array detectors.

Since the image can be divided into section image and treat each
section with space invariant assumption. For simplicity, it will
simulate the global adaptive MAP sectioning filter which set Wi =W

h
for any i,j.

The simulation is done with p = 0.95 for different weight of
5 section and for different (SNR) g - The experimental results are
shown in Fig. 4. The layout of picture is as follows:

The upper left picture is an original image. #

The upper right picture is a noisy image.

=T




Fig. 3a. The restored image of
global adaptive MAP filter
with weight Wi = 0.3.

i
;

Fig. 3c. The restored image of
global adaptive MAP filter
with weight Wi = 0.8.

Fig. 3b. The restored image of

global adaptive MAP filter
with weight Wi = 0.6.

Fig. 3d. The restored image of
global adaptive MAP filter
with weight Wi = 0.9.

-




The lower left picture is the restored image of MaP Filter
with Wl = 0.5.

The lower right picture is the restored image of MAP Filter
with different W, value.
The Wy 7 U.5 is equal weight between maximum likelihood (ML) solution

and a priori solution.

From the experimental results, it is illustrated that the more
welght on the ML term, the higher frequency information <an be
extracted. Also, the overweight on the ML solution results in
ill-conditioning of some solutions of the MAP estimate. Since the
overweight on the ML solution, the MAP estimate will be asymptotically
approached to ML estimate. The ML estimate indeed, is the inverse
filter of the image restoration with blurring degradation case. Since
the amplitude response of PSF of a linear motion blurring has the
singularities and also it seriously distorted by the Poisson noisy
degradation. Therefore, the global adaptive filter has an optimal
weight filter. Consequently, the local adaptive filter has an optimal
weight filter in the blurring degradation cases, too.

Implementation of the MAP Filter with 2-Dimensional Blurring

Degradation and its Experimental Results

This section will discuss the implementation and experimental
results of the MAP filter with 2-dimensional blurring degradation
which often encounters 1in many practical interested cases. The
overlap-save sectioning MAP filter will be implemented with separable
assumption and nonseparable assumption, respectively. The blurring
degradation is simulated by 3 x 3 pixels blurring. The non-stationary
mean is estimated by 2-dimensional moving average with window size
7 x 7 pixels over the detected image intensity. The separable of H

Mo i ciadecaia N




Fig. 4a. The restored image of
the MAP filter with (SNR) pg =
/15 for separable 2-D MAP filter.

Fig. 5a. The restored image of
the MAP filter with (SNR)ymg=v15
for nonseparable 2-D MAP filter.
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Fig. 4b. The restored image of
the MAP filter with (SNR)yms=
Y20 for separable 2-D MAP filter.

Fig. 5b. The restored image of
the MAP filter with (SNR)pg=v20
for nonseparable 2-D MAP filter.




matrix means space-invariant separable. When this is the case, the
MAP estimate Eg. (4) can be implemented as a column processor first
and then implemented as a row processor. The solution to this MAP
estimate 1is employed the same sectioning method with Newton-Raphson
technique as before. O0Of course, the processing time of 2-dimensional

MAP filters 1is twice as much as that of l-dimensional case. The
experimental results are shown in Fig. 5 for different (SNR)rms and
P = 0.95. The layout of resulting picture is as follows:

The upper left picture is an original image.
The upper right picture is a blurred and noisy image.

The lower left picture is the restored image of 1-dimensional
MAP filter.

The lower right picture is the restored image of 2-dimensional
separable MAP filter.

Figure 4 illustrates that the restored image of 2-dimensional
separable filter 1is overly smoothing the Poisson noise degradation.
The restored images are some improvement over blurred and noisy image.
Although the separable assumption is probably good first-order
approximation of well-correct linear system, the image field itself is
not separable at all. Therefore, it is necessary to try 2-dimensional
nonseparable MAP sectioning filter

When the PSF is a nonseparable space-invariant function and
assuming Rf is the identity matrix. Using 2-dimensional nonseparable
sampled infinite area superposotion operator H models 2-dimensienal
blurring degradation. H matrix is M2 X N2
the observed data size, the processed data size of sectioning MAP

matrix. Where M and N are
filter, respectively. Thus, it needs solve N2 order linear system

equation of Eq. (4) in order to find the incremental value of the
root in each iterative step. In spite of the small size of the
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section, it needs tremendous amount of computing time for this

sectioning MAP filter.

The simulation is done with a 9 x 9 pixel section size with
overlapping 4 x 4 pixels. Since blurring degradation is 3 x 3 pixels
blurring, the wraparound data is 2(L-1)x2(L-1) pixels which is 4 x 4
pixels. The nonstationary mean is estimated by Rolling Window Moving
Average (RWMA) method which is a very easy, fast algorithm for the
2-dimensional moving average over any size of rolling window. Because
the cpu time of this sectioning MAP filter takes about 100 minutes for
processing the 256 x 256 size picture, it only processes the last half

size of noisy picture with two different (SNR)rms signals for
demonstration. The experimental results are shown in Fig. 5. The

layout of pictures is as follows:

The upper left picture is an original image.

The upper right picture is a blurred and noisy image.

The lower left picture is a nonstationary mean image.

The lower right picture is a restored image of MAP filter.
From Fig. 5 it is clearly seen that the noticeable better results
over the restored 1image of Fig. 5. However, the cpu time of the
nonseparable assumption is about 2 order longer than that of separable
assumption. Therefore, it is trade-off between performance and
computing time.
Conclusion

The MAP filter with blurring degradation '»r Poisson noise model
has been developed. The implementation and solution to the MAP filter

are heavily dependent on the scheme of blurring degradation matrix H
and covariance matrix of the object image. It has been shown that the
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| overlap-save sectioning method with Newton-Raphson technique is a good
; fast approach to find the suboptimal solution of MAP estimate. The
l-dimensional blurring and 2-dimensional blurring degradation with
different Poisson noise degradations have been simulated.

From the experimental results, it has been found that the
; estimate nonstationary mean carries the most structured background low
frequencies information and also the covariance matrix gives the
higher frequency information and the stable solution of Newton-Raphson
iterative method specially in the higher (gﬁﬁ)rms of 1image signals.
It also has been known that the global adaptive MAP filter has an
optimal weight over the best quality of image <criterion, since
overweight on the ML term solution will give rise to the
ill-condition. From Fig. 7, it can be concluded that the quality of
the restored image of MAP filter for nonseparable case is better than
that of MAP filter for the separable case. However, the cpu time of
the nonseparable case is much longer than that of the separable case.
] It is hope that the fast algorithm by the same concept of RWMA method
can be developed in the future.

r Nevertheless, this report has built the solid framework for image

restoration of blurred images with the Poisson noise model. It has
been learned that the overlap-save sectioning MAP filter with
Newton-Raphson iterative technique can be used for solving larger
dimensionality and nonlinearity MAP estimate equation, and that the
nonstationary mean and variance cam be accurately estimated from the
observation data-photon counts.
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3.4 The Quality of an MAP Restoration Filter for Poisson Noise

Chun Moo Lo and A. A. Sawchuk

Introduction
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We have developed the MAP estimate for image restoration with a
Poisson noise model in previous reports [15]. In this report we try
to investigate the quality of this MAP estimate. The quality of
estimate depends on the performance criterion chosen. There are two
types of performance criterion. One is that criterion used specifies
the estimator structure and the other is the performance itself. The
MAP estimate and MLE estimate belong to the former one. Since the MAP
estimate 1is the mode of the a posteriori probability density and the
MLE estimate is the mode of the a priori density probability. The
Bayes estimate belongs to the latter one because it minimizes the risk
of the estimate. Of course, the MMSE (minimize mean square error)
estimate is a special case of Bayes estimate when the cost function is
proportional to mean square error of the estimate. However, it is
customary to choose the conditional or unconditional expected square
error of estimate as an universal measure of “guality" of all
estimates. Unfortunately, the expectation operation leading this
measure is, in general, very complicated owing to the complexity of
various estimate. However, it is possible to derive an expression for
a lower bound on the variance in terms of only the statistical
properties of the observed signal and estimate bias. This quality
measure of any estimate without having any knowledge of the estimate
itself except that it is unbiased estimate. This lower bound for the
estimate error variance 1is well known as Cramer-Rao lower bound
(CRLB) .

In short, there are two quality measures of the estimate which
are the expectation of the estimate and variance of the estimation
error. In general, we try to find an unbiased estimate with small
estimate error variance.

Biased Estimate and Unbiased Estimate

A conditional unbiased estimate is one whose expected value is
equal to the true value of the quantity being estimated. An
unconditional unbiased estimate is one whose expected value 1is equal




to the expected value of the quantity being estimated. Here, the
estimate X is taken to be a random variable being a function of the
observations Y. Therefore, if X is a conditional unbiased estimate,
then

EY§< = f X (Y)P(Y|X)dY = X (1)

and if X is an unconditional unbiased estimate, then
EYﬁ = J X(Y)P(Y)dY = E(X) = X (2)

Biased estimates, on the other hand, do not possess this desirable
feature; their expected values contain an additional function B(X) of
the parameter to be estimated in equation. Accordingly, for biased
estimate we have

o (3)
EgX = X4+B (X)
or
EY§ = X+B (X) (4)

for the conditional biased estimate and the unconditional biased
estimate, respectively.

'iMAP'i' an Unconditional Unbiased Estimate Vector

From a previous report [15], we have

A - T (5)
= -1
fuap = I * ARGH {g-1)

is the N2

is the N2 x 1 nonstationary mean vector

where Xx 1 estimate vector

£ wap
3
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R¢ is the cgvarignce matrix of image
H is the N x N discrete blurring matrix
Taking the expectation on both sides of eq.(5) we have

fwap] = £ + EDRgH (g-1)]

Since

i

Agi
E[gl] Ebi{Egilbi (-b'T)}

Where Egilbi denotes conditional expectation over 9;
Ebi denotes expectation over bi hence

Thus

Elg) = 1

Substituting (6.10) into (6.6), we get

for

given

(6)

(7)

(8)

by .

(9)

(10)




=T (11)

BEE ]

A

Therefore, EMAP is an unconditional unbiased estimate vector.

Cramer-Rao Lower Bound (CRLB)

For notational and mathematical simplicity, we begin to focus our
attention on the non-random scalar parameter case, for which we will
drive the Cramer-Rao inequality. Then, for the random vector
parameters case, the CRLB can be derived by & straightforward
modification.

CRLB for non random variables case

First, we assume X is a vector unknown constants to be estimated
from a sequence of measurements y(l), y(2),...,y(k) as shown in

Fig. 1. where y = [yl'yz""'yk]T'

~

Assuming X is an unbiased parameter estimate we have

J XE (X|X)dX = X (12)

and from Eq. (1) we have

co I T(y) £ (y|X)dy = X (13)

k-fold
integral

A~

where X = T(y).

Using eq.(12) and finding normalized correlation coeff.
between X = T(y) and é%ln f(xIX) and some algebraic manipulation, then
we have
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A 1
Var(T(y)) = Var X > aln (y[X) (14)
Var[" 8; ]
or equivalently
~ A 2 l
Var X = E[(X-X)"] > [aln(z}x)]z (15)
—ox | |

Eg. (15) is called Cramer-Rao inequality for the unbiased estimate.
Note that CRLB is a bound on the mean-square error.

i CRLB for Random Variable Vector Case

For the random variable vector case, the information matrix JT
now consists of two parts

F gp & ag + 3, | (16)
where
k Ip 2 E({V4[(1In P(y[X)1}{Vy[1n P(y[x)117T) (17)
{ = &
3, & BE(74n P01} {7ylln PN (18)
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The matrix JD is the information matrix which represents information
obtained from the data or from the a priori density P(x‘g) of MAP
estimate. The matrix JP is the information matrix which represents
information obtained from the a priori information. The correlation
matrix of the error is
A T

Be = BAE R, (19)
Where §E:= (¥-X) . The diagonal elements represent the mean-square
errors and the off diagonal elements are the cross correlations. The
mean-square error of the estimate is related to the information matrix
as follows
ii
g

2
E{X_ 1 >4 (20)

The diagonal elements in the inverse of the total information matrix
JT are the lower bounds on the corresponding mean-square errors. This

is the case in which we are interested.

CRLB of MAP Estimate for Poisson Noise Model

The estimate error covariance, in general, is very complicated to
find due to the complexity of the posteriori density. However, for
the MAP estimate it is possible to derive an expression for a lower
bound on the variance since we know the a priori density P(xlg) and
probability density of X P(X). From Eq.(l6), we have

where J and JP are defined in eq.(17) and eq.(18) respectively. We
then have
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. = wE (22)

L,
Jp, = A°H R_H (23)
where
fir =t
R = E{(g-q) (g-9) "}
Hence
A 27T -1
T = A“H RqH + Rg (24)

This is total information matrix JT of the MAP estimate for Poisson
noise model.

-1
When qT exists, from eq. (24), we have

2 _ 2 -1 25
E[(fi fi) e {JT }ii (25)

e
(0 8
ith component of the restored image vector f;. Inspection of eg.(25)
indicates the error bound depends on four quantities: rate function

where {JT is diagonal element of JT'land fi is an estimate of the

constant ), discrete blurring matrix H, covariance matrix Rg, and

covariance matrix of image Rf. If we assume that

2
R =01 and gf = ofI then we get

Q




b e

I 4~1

—¥ 2.T. 2 2,-15
= H HOZI) + (o)
= g 1 ; (26)
2 2 2.<1_.~1
- 1o |lfeln) + (0PIl
then
2
(0]
f 2y = . (27)
E((f:-£)%] = 5—3757
B A4 Hl| cg_of+1
We now rewrite eq.(27) to obtain
1
= (28)

X &2
3 %
e U s
== O'f

From eq. (28), we have observed:

2 "
(1). When og¢ is larger value, then we can approximate eq.(28) as

i (29)

where b, is mean blurred object intensity of ith pixel and
That means that ) , H, and 0; play more important

r.m.s."*




roles in the error bound of the Poisson noise model than the variance
of the object Oi.

(2) . The error bound is inversely proportional to the square of
the ensemble mean rate function AEi. From Fig. 2, we can see that the
Poisson noise degradation decreases rapidly as XBi increases.
Consequently, the (S/N) is larger than 10 db or equal to 10 db
(i.e. Ab,> 10U), then

r.m.s.

_e 12 -4
E[(£,-£,)°] > 10 (30)

Thus, the Poisson noise degradation effect disappears in a practical
sense.

The layout of Fig. 2 is as follows:
The upper left picture is the Poisson noisy image with Xb.=2.5

Y
The lower left picture is the Poisson noisy image with Ab;

The upper right picture is the Poisson noisy image with Ab;=5
;=10
The lower right picture is the Poisson noisy image with b .=2

;=20

(3). The error bound is inversely proportional to the properties
of the point spread function H; the error due to noise is "amplified"
by the point spread function. This is the result of ill-conditioning

in the restoration process.
Conclusion

We can conclude that the MAP estimate for Poisson noise model 1is
an unbiased estimate and that its estimation error variance lower
bound (CRLB) is defined by eq. (35).

The use of statistical estimation is particularly desirable from
the viewpoint of error analysis, since known techniques can be applied
to compute the error bound. We have developed the CRLB for the
Poisson noise model and also shown the behavior of the CRLB
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approximation. From these facts, we are able to find from various
algorithms which error bound 1is closer to the CRLB. It must be
remembered that the CRLB is a lower bound and the actual restoration
error will be greater. It 1is possible that a better suboptimal
‘algorithm for the sectioned MAP estimate can be found to reduce the

actual restoration error closer to the Cramer-Rao lower bound.
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3.5 An Approach of A Posteriori Image Restoration

David D. Garber and John B. Morton

The Method

The problem of a posteriori image restoration, that 1is, the
problem of image restoration without a priori knowledge of the nature
of the blur, is a difficult problem at best. Neglecting the problem
of restoring 1images degraded by atmospheric turbulence, research in
this area has not been extensive and is fairly well contained in
references [1-11].
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The approach presented herein makes two assumptions. The first
assumption is that the blurred image and the unblurred image are
related via a convolution integral. That is,

g(x,y) = [fh(x-s,y-n)f(e,n)dedn+n(xly).

-0

where g(x,y) denotes the blurred image, h(x-f{,y-n) denotes a spatially
invariant point spread function, f(£,n) denotes the unblurred image,
and n(x,y) denotes additive noise. The second assumption is that an
estimate can be made of the unblurred image of some object in the
blurred image. For example, if the blurred image contains a sign and
some of the letters of the blurred sign are discernible, then one can
estimate the unblurred image of one of these letters.

Let fl(i,j) denote an estimate of the unblusred image of an
object contained in the blurred image. Note that f;(i,j) now denotes
a digital image. ALet gl(i,j) denote the subimage of the blurred image
corresponding to fl(i,j).

We will now find a convolutional restoring filter which relates
gl(i,j) to fl(i,j) in some optimal sense. Once the filter has been
defined and since the blur is assumed to be a spatially invariant
blur, the restoring filter can be applied to the entire blurred image
to estimate the entire unblurred image.

Mathematically, the problem is to find the restoring coefficients
a(k, %) such that




K L

a(k,)g(i-k,3-%)
k=-K 2=-L

1 estimates f(i,j) in some optimal sense. The optimal sense that we
have considered is minimum squared relative error. This criterion is
more highly correlated with one's visual perception than the more
common least squares criterion [12].

Thus, the problem is to minimize over a(k,l),

! : 2
Y alk,0)gg (i-k,i-2)-£; (i,3)

3 >, k=Z—K 2=-L (1)
i j

£, 50

for f£(i,j) > 0.

Taking partial derivatives with respect to a(m,n) and setting the
results to zero,

. Bk, B g, kiak, J=k)=2, 11,9)
Zgl(i-m,J—n) Z; zl: ) & 1 o

%l(i’j) fl(i,j)

m=-K,-K+1,...,K and n=-L,-L+1,...,L.

Rearranging,
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gl(i—m,j—n)

~

B v

gl(i-m,j-l)a(k,l)gl(i—k.j'“ - Z Z
i 3

£ %,9) £, i
1 4 k ¢ i
gl(i—m,j—n)gl(i-k,j—x) B :E: :E:gl(l—m,j-n)
TL 2w L2 PRI = W= )
k g i 1 e i3

Note that equation (2) is a linear algebraic system in the
(2K+1) (2L+1) unknowns a(k,%) and can be solved in a straightforward |
manner. The restoring filter is then applied to the entire blurred
image.

Experimental Results

To determine the effectiveness of the above ideas under the most
ideal <conditions, two simulations were performed. The simulations
assumea perfect knowledge of the unblurred image of an object 1in the
blurred images. In each of the two simulations the image of Figure 1
was blurred within the computer, and a 64x64 pixel subimage centered
about the face of the man 1in Figure 1 was assumed known. This
subimage would represent an ideal fl(i,j) in equation (2). After
solving equation (2) for the coefficients of the restoring
convolutional filters, the restoring filters were applied to the
1 entire blurred images to estimate the unblurred images.

The first simulation assumed the point spread function of Figure

i 2, a triangularly shaped point spread function extending over an area
of 7x7 pixels. Displayed in Figure 3a are the results of blurring
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Figure 1

Figure 2

Figure 3b
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Figure



Figure 1 with the point spread function of Figure 2; Figure 3b is the

corresponding restoration using a 15x15 pixel restoring filter.

The second simulation assumed the Gaussian shaped point spread
function illustrated in Figure 4. In Figure 5a is the resulting
blurred image and in Figure 5b, the associated restored image. Again,
the restoring filter was of an extent of 15x15 pixels.

Figure 6a contains a camera-induced blurred image. This is not a
simulation. In this case, the exact nature of the blur and the exact
nature of the unblurred image is unknown. Extensive experience with
this particular image indicated that the degradation is considerable,
and that the blur appears to be a combination of a diagonal motion
blur and defocus. Using a restoring Wiener filter corresponding to
various combinations of a diagonal motion blur and/or defocus,
produced restorations less than satisfactory. In contrast,
constructing an image of an "S" estimated to be ideal (unblurred) and
using the 1image of the "S" in equation (2) as fl(i,j), a restoring
filter was calculated via equation (2). Applying the restoring filter
to the image in Figure 6a, the restoration in Figure 6b resulted.

Conclusion

A method of a posteriori image restoration has been presented.
The method makes two assumptions: 1) the blur is a spatially invariant
blur, and 2) the unblurred image of some object in the blurred image
can be estimated. The simulations demonstrated that, given an ideal
estimate of the unblurred image of some object in the blurred image,
the method provides quite good restorations. For the case of a
camera-induced blur, the results will be contingent upon the degree to
which the wunblurred image of some object in the blurred image can be
estimated. The results of Fiqure 6a and 6b illustrated that
satisfactory results can be achieved via this method.
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3.6 Errors in Polar Coordinate Sampling

Yeh-Hua Peter Chuan

Introduction

In many of the new imaging systems that are propping up, more and

more of these seem to collect their data samples with a polar
coordinate format. Most of these systems involve obtaining
projections of the object and reconstructing the image from these

R P T P P

projections. Since only a finite number of samples can be read from
] each projection, the polar coordinate sampling format is built into
the system. As an example, these include radio astronomy, electron
microscopy, x-ray tomography, optical imaging, radar imaging, and so
on.

The first attempt to estimate the sampling requirements in polar
coordinates appeared in 1967 [3] in which the maximum linear distance
between any two adjacent samples in the Fourier transform domain was
chosen so that its inverse was greater than the maximum diameter of
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the object. This 1intuitive’y obtained result was very accurate.
Smith et al. (4] in 1973 computed the Fourier transform of a Gaussian
blob sampled in polar coordinates. It was found that besides another
Gaussian blob that was obtained after the Fourier transformation, a
series of "clutter" terms associated with the blob also appeared.

The objective of this study is to obtain an analytic expression
for the werrors or "clutters" associated with sampling in polar
coordinate format and therefore try to determine exactly the necessary
and sufficient sampling rate in both azimuth and radial dimensions.
Our approach is as follows: We will sample a disc and an annula ring
pupil in polar coordinate sampling and compute its Fourier transform
which will be called "discrete" point spread function. Since these
functions are isotropic, we will mention the transformation as Fourier
Bessel Transform. We will apply Poisson's summation formula to
compute the discret=z point spread function and get an expression for
the difference between the discrete transform and continuous

transform. This difference is the error associated with the sampling.

A very significant immediate application of this study is on the
estimation of the azimuth and radial sampling interval for x-ray
tomographic systems which use trial and error to find an "optimum"
number of azimuth samples or projections. Since each projection
exposes the patient with an extra dose of radiation, it 1is extremely
important to know the minimum number of projections that is needed to

get a reconstruction that is free of sampling errors.

TE. Poisson's Summation Formula
N-1 NA o NA - 3 (1)
2 m 4 i
z - =‘%S f(x)dx+ T S f(X)COS(jrnX)dX+ 2[f0 fy!
m=0 0 n=1 0
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E =

f(ma)

>
[}

some arbitrary increment of x

z
[}

total number of increments over which the integration is

carried out.

This is Poissog&s Summation Formula. It says that if we approximate

an integral f(x)dx by a linear sum of samples, the error incurred
; ) . : ¥ Ca th
in the approxl%atlon will be an infinite sum of error terms, the n

order of which being

NA
_ 2 2m
&, = KS' f(x)cos(7rnx)dx

0

A slightly modified version that will be handy is as follows.

N-1 (N-1)A
Zf = is £ (x) dx
m A
m=-N+1 -(N-1)A
(2)
@ (N=-1)A
+ Z%— f(x)cos(zg-nx)dx+ %[f-N+l+fN—1]

n=1 =-(N-1}A4

These two formulae will be very powerful in the following sections.

I1I. Azimuth Sampling

Suppose we sample a unit circle with N samples as shown in figure
1. The Fourier Bessel Transform of the unit circle is




Figure 1. Angular sampling on a unit circle.
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2T

1 . oj2mwpcos6 . _

fnjl & de JO(Z“O)
0

and by Poisson's summation formula, the discrete version is

N=1L i =
1 j2mpcos ($2™) _
'ﬁz e NT = Jo(zwp)+z e, (p) (3)
i=0 n=1
where
2m
1 :
e (p) = F:{ eJ2TPCOS s (nNB) A8 (4)
0
hence
= nN'
e (p) = 2(-1) JnN(an) (5)
We have assumed that N=2N'. e (p) in (5) represents the azimuth

sampling error.

Since N is usually large, we need only to look at the properties
of Bessel function of large orders. For large orders N, JnN(z) is
negligibly small compared to its first peak for 0 £ z<nN. The first
peak is the most dominant one. Over (0,nN), JnN(z) is monotonic
increasing. From (5], the first peak of JnN(z) occurs at

1 1
p = Pn = z—t\;—n + (94__2:861\1 )n3+ OénN) 3) (6)

W =
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Table 1 shows values of P computed for various values of n for N=256
using the linear approximation and the two term approximation of (6).
Values of J (P) are also computed. This shows that the azimuth
sampling error can become very significant compared to the main lobe
peak of J0(0)=1 if N is not chosen large enough. Also, even without
linear approximation, P is still very <closely equal to nP with
P ~ 41. Figure 2 shows a plot of the exact transform J;(27p) and lst,

2nd, 3rd, 4th order azimuth sampling errors.

K Radial Sampling

Figure 3 shows the disc pupil function discretely sampled in the
radial dimension. It is

G(f) = Af}i:d(f—kAf) (7)

where Af = fBW/K—l. The exact Fourier Bessel transform of a disc
pupil of radius fpy is

3. (27E..p)
W
B{circ(f/wa)} = £ —1——;—-’5—— (8)

Substituting (7) into the Fourier Bessel Transform equation, the
discrete point spread function is

K-1

2T
TAf _5_ |k|J0(E—_—1fBWDk)

k=-K+1
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Figure 2. The exact Fourier Bessel Transform Jo(Zwo)
and the independent error terms.
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Radial Sampling

Figure 3. Full disc pupil function, discrete
in radial dimension but continuous
in angular dimension.
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Using Poisson's summation formula (2), and carrying out the

simplification, the discrete point spread function is

K-1
nAf E |x IJO(%lwapk)
k=-K+1
(9)

o

J1(2nwap)

| IR Zen(p) + 2mEpdo (2nfpye)
p n=1

= f

where the second and third terms are the errors due to radial
sampling;

en(p) = & (p,x) » wyx)}| (g1 (10)
2
_17[}{2_02]—3/2 Xx>p >0 (11)
2m
é (p,x) =
0 g > X 20 (12)

and wl(x) = 2nwasinc(2wax).

B. Annula Ring Pupil

A similar derivation as in the full disc case will give a point

spread function




Zen(p)+2nwaJ0(2nfmaxp) (13)

n=1

J.(2nf =
=[fm l( B maxp) £ Jl(znfminp1+
ax

p p

where

en(p) = én(o,x) * W, (x)
X = 2%511) (14)
BW
én(p,x) is as defined in (1l1)and
wz(x) = 2nwasinc(wax)cos(anox) (15)

In both cases, wJ}x) and wz(x) peak at x=0 and én(o,x) blows up
at x=p., Since p is a moving parameter in the convolution of (10) and
(14), en(p) will peak in the vicinity of p = n(K-l)/wa. The radial
sampling error becomes significant therefore at approximately

n(K-1)
BW

Figure 4 shows a plot of the discrete point spread functions for the
full disc case and figure 5 shows a plot for the annula ring case.

V. Simultaneous Radial and Angular Sampling
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Figure 4. Discrete Fourier Bessel Transform of a radially
sampled disc pupil of radius fgpy=1, with K=20
and K=40. Over this range of p, the curve for
- K=40 is taken at the exact Fourier Bessel Transform.
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10 20 25

Figure 5. Fourier Bessel Transform of the annula ring
with K=20. Note that the 1lst order clutter
occurs at around p=x K-1=109.
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Using equation (3) and summing over circles of increasing radius,
the discrete point spread function can be obtained by reusing i
Poisson's summation formula. 1In general, the discrete point spread !
function is found to be composed cf 5 terms.

1. The exact Fourier transform of the continuous pupil.
2. Radial sampling clutter - the sampling error due to
radial sampling alone.
3. Angular sampling clutter - the sampling error due to
azimuth sampling alone.
4. Joint sampling clutter - the sampling error due to
both radial and azimuth sampling.
5. Residual sampling error - error terms that do not clutter up

the point spread function.

Table 2 lists a summary of these five terms for both the disc pupil
and the annula ring pupil.

The angular sampling clutter and the radial sampling clutter
behave independently of each other and hence N and K can be chosen
independently. But in order not to oversample in either azimuth or
radial dimension, they can be <chosen such that the independent
clutters (2 & 3) superimpose, and this occurs when

N = 27 (K-1) (16a)
for disc pupil

1
N = 27 (K-1) (fg+ 3Epw)/fpy (16b)

for annula ring pupil.

The joint sampling clutter becomes significant always beyond (in
radial distance) either the angular sampling clutter or the radial
sampling clutter, therefore this component is relatively unimportant.
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The residual sampling error does not clutter the point spread function
but only slightly modifies the exact point spread function. For large
K, this term is negligibly small.

Now suppose E u,(p) is the summation of the angular sampling
clutter, radial sampling clutter, and the joint sampling clutter.
Then given the maximum clutter level € that can be tolerated and the
maximum radial extent a of the object to be reconstructed from the

sampled data, we can choose N and K such that
ENK(Za)g € (27)

where ENK(Za) can be computed exactly using the analytic expressions
in table 2.

ENK(p) = el(o)+Al(o)+cll(o)

el(o) = 1lst order radial sampling clutter
A,(p) = lst order angular sampling clutter
C11(P) = (1,1) order joint sampling clutter.

VI. Conclusion

We have found exact analytic expressions for the artifacts that
are dgenerated by Fourier Bessel transforming a polar coordinate
sampled disc and annula ring pupil functions. The resulting point
spread functions cohtained sampling errors which we have called
clutters. The «clutter terms can 1in general be put into three

categories viz.
L Radial Sampling clutter

2s Angular sampling clutter
e Joint sampling clutter.
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It turned out that the simultaneous or Jjoint sampling clutter
does not become significant before either the radial sampling clutter
or the angular sampling clutter does. A special <case arises when
N = 2 (K-1) for disc pupil or N = 27 (K-1) (fO + %fBW)/wa for annula
ring pupil in which case all three components become significant
simultaneously and henceforth their sum (joint clutter) must be
considered. Then N and K can be chosen exactly by using the analytic
expressions for the «clutters, given the level of clutter tolerance,
and maximum radial extent of the object.

Finally, it 1is expected that a sampling theorem for polar
coordinate sampling can be derived by extending the analysis to a
general two dimensional bandlimited object. It should also be noted
that 1if the first and last radial samples were weighted by 0.5 in the
(discrete) summations with respect to index k, the residual sampling
error term will disappear.
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3.7 Reconstruction of Rotating Targets

Yeh-Hua Peter Chuan

This report is concerned with the reconstruction aspect of the
turntable radar 1imaging system that was described by C.C. Chen éand
H.C. Andrews in [1]. It was found then that the complex data D(e,%)
collected represented the two dimensional Fourier Transform Z(G,%) of

the target "reflectivity function” o(x,y) assuming that

l. o(x,y) did not change with aspect angle 6.

P

2. no shadowing problem existed.

Our reconstruction algorithms will be based on the above
assumptions and result. Deviations in practical solid targets from
the assumptions will be considered as perturbations which degrade the
image. The shadowing problem has been addressed to in [2]. Some
further assumptions are that the target rotation rate and the position
of the center of rotation are known exactly. Corrections concerning
deviation from these assumptions belong to the realm of motion
compensation. Also, the collected data is narrowband in nature in
that the fiequency béndwidtb EBW is much much 1less than the mean

frequency fo, l1.e., fBW <<f0.




Reconstruction algorithms based on the above assumptions have
been proposed but none seem to make use of the full potential of the
system to get the best limiting resolution digitally. The optical
implementation of the high resolution reconstruction problem was
achieved by J.L. Walker [7] by recording the data on a film in what
is called the polar format. Here, we are concerned with digital
roconstruction and the problems associated with it. The basic problem
of reconstructing rotating targets 1is that of implementing the

discrete version of the inverse transform relationship.

n %max i B '
o (x,y) =S S Enle, fye ALTEARCOSDITRING) sban (1)
6 £ .
min
Here we have implicitly assumed that 360° of data are available. In

practice, this 1is not always true and therefore its effect must be

considered. In either case, the amount of data involved is usually so
horrendously 1large that it poses a formidable computable and storage
problem.

Also, since in practice the data is discretely sampled 1in polar
coordinates, some form of interpolation will be needed somewhere in
the reconstruction algorithm; for complex data, this becomes a
difficult problem.

Here we will describe three different methods to implement (1).
Throughout this report we will use spatial frequency as our basic unit

in frequency and shall be denoted by a hat on the letter.

Coherent Processing

The reconstruction algorithm that makes use of the full doppler

frequency range available in the data is called coherent processing.
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Equation (1) can be implemented directly by integrating over f
first. This step 1is <called Range Compression and the resulting

compressed data is given by
Lat (2)

where

A~ —A y . ,\-l,\ ~
fpw = fmax fmin and £o = Z(fmax+fmin

) -

By using the narrow assumption on (1), substituting (2) into (1) after
a change in variable, we can get the following:

2T L
2 -j2mf,Lg
o(x,y) fOS gRC(e,le)e 07%as (3)
0

her
e = Ze= xcosf+ySinf.

Equation (3) represents the azimuth compression step and the idea
of coherent processing is obvious from (3) since the range compressed

data are combined after compensating for the phase of the echo from
the point (x,y) at the corresponding aspect angle g.

The physical interpretation of range compression is well known in
radar and signal processing. The physical interpretation of azimuth
compression can be obtained by noticing that the doppler frequency

(with respect to a change in aspect angle) of the echo corresponding
to the point (x,y) is given by




e e
fD(e) i cﬁ“‘“e)
where

$(6) = doppler phase = ZW%OQG.

Hence, the azimuth compression represented in (3) corresponds to a
matched filter whose frequency response is given by fD(e).

The point spread function of the imaging system corresponding to

this reconstruction technique is the isotropic function

Jl(2npfmax) ~ J1(2npfm. )

o i i in® .
PSF(p) = £ .. y fmin————:;e—~—— (4)

The resolution of this system is approximately 1/f .

Incoherent Processing

In contrast to coherent processing, a reconstruction which does
not make wuse of the doppler phase of the echo is called incoherent
processing. For this system, it does not matter how the range
compressed data was obtained. The azimuth compression step of this
processing technique 1is achieved by incoherently integrating the
magnitude squared range compressed data as follows:

2T

(x,¥) =S lgge (8,24) 1%a8. (5)
0

0incoherent

In conventional radar systems, the doppler phase is usually 1lost
at the output end. But if the magnitude of each range profile
lch(e,QO)] is recorded for a continuum of aspect angles, equation (5)
can be used to reconstruct the target. Equation (5) therefore allows

us to do radar imaging with conventional radar systems without the




T T T P

necessity to make costly modifications.

The point spread function of this imaging system can be found to
be an isotropic function

o]

£ J. (2%F_..0) i J
BW 1
PSF (p) = 2 + 2t pwluCx

p k=1 p

(ZNE p)
2k+1 BW (6)

where

2k+1
3
(k+3) (k+3) (k- 7)

Table 1. Table of coefficientsck for the Bessel function series
in (6).

0.400
0.095
0.044
0.026
0.017

(G -G S | T

The point spread function of this system is very close to that of disc
pupil function and the summation term in (6) represents deviation of
the system PSF from that of a disc pupil.

The resolution of the incoherent system is essentially determined
by 1/2fBw
achievable by the coherent processing technique.

which is much worse than the resolution l/f0 theoretically

Mixed Processing
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Another way to implement (1) is to process the data D(G,E) batch
by batch. The image from each batch is called a frame image. These
frame images can be rotated, interpolated, and superimposed to get a
composite image. The batch process can be carried out coherently and
the superposition can be done incoherently. Because of this, this
processing method is called mixed processing, and was proposed by Chen

(1].

Mixed procesing involves the following steps:

1. Segment the data azimuthwise into N segments so that equation (1)

becomes
N_l ~ e ~
~ ~ . + .
o(E,n) = E:Ufo(e,f)ejz"f(gc"se WeaBR aese (7)
=O Sn
where = 1 1 o ~
Sn == {(e,f) |es[en_ 'iewlen"' '2"ew]l fe[fmin'fmax] }I
By new = center azimuth angle of the nth segment,
ew = 2m/N = azimuth segment width.

2. Using the narrowband approximation on (7), change of variable,
rotation of axes, and Taylor's expansion on the exponential argument
of the kernel in (7), we will arrive at the expression:

N-1
c(g,n) = E in(E'n)e
n=0

jZWfO[Ecosen+nsinen] (8)

where
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f (£,n) = nth rotated image frame
n (o o ~ ~
P jan (£ _x+f_y)
= J]bn(fx,fy)e X X dfxdfy (9)
Sn
X = gCcoOsfH +nSin6
n n
y =-£8inf_+ cosen
fx = f—fo
fy = (e—en)f for 6enth segment
Dn(fx,fy) = D(6,f).

Equation (8) is an approximation to the coherent processing technique.
The batch processing in (9) can be implemented by FFT techniques. The
processing suggested by equation (8) represents batch by batch

coherent processing. Instead of (8), 1incoherent batch by batch
processing can be done.

N-1
__:E; % 2
OMP(E,:W) o lIn(Ern)I (10)
n:

The point spread function of each image frame is closely approximated
by

6W 0"BW

slnc(wax)Slnc (waoy)

where x is the down-range dimension (along the line-of-sight) and y is
the cross-range dimension. The point spread function for the mixed
processing technique is therefore a superposition of the point spread
functions of N such image frames. The resulting point spread function
is essentially given by

A A

PSF(p) = Gfowaﬁlnc(fmp)

~

where fm = min(wa,ew;O).

-149-




Computationally, this is the fastest, but the resolution is

limited to the maximum azimuth segment width ew. ew is chosen small

enough so that "range walking" and "variable range rate" aberrations
are negligible. 1In particular,

ew S8 — for negligible "range walk"
afBW
< , 3 i 2
ew = —g— for negligible "variable range-rate"
a
0

where a=maximum radial extent of the object (target). For example

with 2 " A 1
fo = 200a » fpy = 102 7,

T T O T T Yy T

ew i 5.73 for both negligible range walk and variable range-rate

; aberrations. The resolution of this system is 1limited to
2 o 1

approximately l/f06w=§5a.

Figure 1 shows the point spread functions of the imaging system
using the three processing techniques.

Digital Reconstruction

Coherent Processing

A discrete version of equation (2) must be used for digital
processing. Let

E k-1 jzlnk
| (i,n) = %E D(i,k)e (11)

kK

9RrC
1

Il
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Figure 1. Plots of magnitudes of point spread functions related
to the three processing techniques. B{circ(f/wa)} is
plotted as a comparison to the incoherent processing
case. The point spread functions plotted are:

J, (27f p) Jq (2ME. . D)
£ B i R i N0 Sl Coherent Processing
max P min P
£ Jy (2TE .0 00 J (27f__p)
BW 2 L +-jéﬂ z:ck L L Incoherent Processing
3 e 4 x=1 e
wa51nc(wa p) (Approximately) Mixed Processing
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shcre i=20,1,2,...,N-1, kn=0,1,2,...K-1

and

T S Y
D(i,k) = D(‘ﬁz'"' fmint KoBwW) "

To compute o(x,y), we use a discrete version of (3), namely

2 NS

£ o j2uf 2
0 , 5! o*e
ol LR “N_E :ch(l'Mewa])e (12)
1=0
where _ i2 . i2
26 = XCOs|\Fe™ +ySin (T2
{z] = the interger nearest to z.

Expression (12) uses a nearest neighbor interpolation scheme, which is
crude compared to those using sinc function weighting factors over
several discrete samples of gRC(i,n). But it turns out that this
method works quite well. [Note that complex interpolation is not
necessary because the blur function of the range compressed data is a
real sinc function.] Among the radar community, expression (12) is
called doppler phase compensation.

From the section on "Errors in Polar Coordinate Sampling" in this
g : p 2
issue, we can determine the azimuth sample rate (7g and the range
sampling rate (fBW/K—l). If the azimuth sampling rate 1is not high

enough one must modify (12) to a form sucl that for each point (x,y)




being reconstructed, only those aspect angles that lie within 6. of
will be coherently integrated. @ = arctan (+y/x); b¢c is the azimuth

coherence interval given by

=l 1
Océ Sin <———~7—> (13)
2A6af0
where
A8 = azimuth sampling interval.
Hence
s Xt ~ 2mi P
o(x,y) = 52 E {QRC(L[Qewal)ejznfOQG}rect = (14)
- 206
1=0 @

If the range sampling rate is not high enough, we can also wuse (14)

but with
A K

Incoherent Processing

Since lgRC(e,Qe){2 represents approximately the real valued
projection of the target reflectivity function o(x,y), we can use
tomographic schemes to implement equation (5). U o Sadapant (x,y) is
actually called the layergram and does not replicate (x,y) very well.
Tomographic schemes that process in the spatial domain (e.qg.
convolution-back-projection [3],[4]) or 1in the Fourier domain (3],
[5]) can be used but with computational speed as the criterion, the

former scheme may be preferred. For a review on tomographic
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reconstruction, see [6], [8].

Mixed Processing

Two dimensional FFT techniques can be applied to each azimuth
segment. Since only the magnitude of the resulting image frames are
used, standard interpolation schemes can be used to rotate the image
frames.

Experimental Results

Table 2 shows the parameters of the data for a model F102A plane.

Two sets of data were used.

Set 1. The F102A model plane is sitting right side up on the
supporting pillars above the turntable. The data

was collected over 180° of azimuth angle only.

Set 2. The same plane is sitting vertically (roll angle=90O)

and data was collected over 360° azimuth angle.

In both sets of data, the nominal azimuth sampling interval was 0.2°.
The meximum radial extent of the object was taken to be approximately
10 ft. This corresponds to a coherence angle interval of eC =47°.
Hence, the data 1is wundersampled. For set 2, the sampling interval
varies from 0.1° to 0.3°. This corresponds to a coherence interval of

29.4° which is even worse. Sampling in range was oversampled.

Figures 2(a), 3(a) are the coherent reconstructions of the model
plane from data sets 1 and 2 respectively, wusing the modified

reconstruction algorithm given by equation (14).

For incoherent processing a much lower sampling rate 1is needed.
From the section "Errors in Polar Coordinate Sampling" in this report,

the sampling interval necessary is A6 < 1/a wa=2.7O. Figures 2(b),
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(a) Coherent Processing (b) Incoherent Processing
(47° azimuth coherence). (180 projections).

(c) Mixed Processing (d) A sketch diagram of
(6.49 azimuth segments). F102A.

Figure 2. Reconstructions from data set 1 using the three
reconstruction techniques. A sketch of the original
plane is also shown in (d).




(a) Coherent Processing (b) Incoherent Processing
(29° azimuth coherence). (360 projections).

(c) Mixed Processing (d) Actual model F1l02A on
(6.4° azimuth segments). a turntable..

Figure 3. Reconstructions from data set 2 using the three
reconstruction techniques. Data set 2 was collected
with the model F102A placed vertically on a turntable
as shown in (4d).




3(b) show the 1incoherent reconstructions from data sets 1 and 2
respectively with sampling interval of 1° and using the tomographic

reconstruction scheme of Shepp and Logan [5].

Table 2. Parameters for Model Fl02A-Plane Data

Model: 0.29 x actual plane dimensions

Plane dimension: 68 ft. (Nose-Tail), 38 ft. (Wing-Span)

Model dimension: 20 ft. (Nose-Tail), 11 ft. (Wing-Span)

Actual physical data Normalized data
(against a=10ft.)
= 9.130 GH £, = 185047 ah
min~ 7° : ~min~ : a—l
= 9,997 GHz fmax= 203.36 (a )
max ~ -1
f0= 9.5637 GHz f0= 194.478 (a )
£~ 0-83 GHz foy= 17.719 (a5
Af = 3.4 MHz Af = 6.92 x 10 (a 1)
A6 = 0.2° A6 = 0.00349 radians
K = 256 K = 256
N = 1800 N = 1800
Conversion factor
xg
£ g > f :
temporal spatial
(sec_l) (ft—l)

Figures 2(c) and 3(c) show composite images of the model plane

from data sets 1 and 2 respectively, using mixed processing technique.
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Each image frame is obtained by taking the DFT of a 6.4° segment of
the data. Figures 2(d) and 3(d) show the actual model plane on the
turntable.

The results show that the coherent processing technique does
improve the resolution of the image to a significant extent as it was
predicted by the point spread functions. The blunt nose of the model
plane, the air intake, the cockpit position, the vertical diameter of
the fuselage, the wing angle and the vertical tail length can all be
distinctly identified. Because coherent integration was carried out
over aspect angles that are i29o from a target point angle @, a target
point will be reconstructed only if it can be "seen" (by the radar)
within j29o from the line of sight. Therefore, the front slope of the
vertical %fail fin is not obvious in figure 3(a).

The incoherent processing technique also shows a significant
amount of "intelligibility" for data set 1 but not so for data set 2.
The mixed processing technique gives about the same resolution as the
incoherent ©processing technique, but the experimental results do not
show conclusively that one is "better" than the other.

Conclusion

We have proposed two processing techniques <called coherent
processing and incoherent processing. The coherent processing
technique is computationally much more demanding than the other two
techniques but it does show a remarkable improvement in resolution and
"intelligibility." The incoherent processing requires the least amount
of computational effort and storage memory but it is restricted by the
necessity of having 360° of the data being available. A more concrete
comparative study is needed on the sensitivity to the estimation error
on the center of rotation, the error on the rotation rate, doppler

phase errors and so on.
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Another major significance our approach to the reconstruction
problem is the complete negligence of the temporal (which is
practical) aspect of the system. By wusing spatial units (e.g.
spatial frequency, spatial distance) and angular units, understanding
of the system becomes considerably simplified and insight is
generated. Even then, intuition into the practical design parameters
(e.g. time sampling requirement, pulse repetition period, etc.) are
not lost because of the simplicity of the conversion factors from

spatial and angular units to temporal units.
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4. Smart Sensor Projects

4.1 Implementation of Advancea Real-Time Image Understanding
Algorithms

G.R. Nudd, P.A. Nygeaard*, S.D. Fouse and T.A. Nussmeier

Introduction

During the past period, we have continued our work to develop
custom designed integrated circuits for real-time implementation of
image understanding algorithms. The work has centered on three areas;
the detailed design anda layout of & third test chip, TCIII, the
development of new concepts for more advanced (higher level)
processing operations (including a texture chip) [1], and the design
and construction of the necessary circuits such as clock drivers to

operate the processors.

In the previous phase of this program, we developed concepts and
test «circuits for "real-time" (equivalent to television data rates)
processing of "low-level" or preprocessing algorithms, including edge
detection, unsharp-masking, 1local averaging, adaptive stretch and
binarization. Most of these «circuits (apart from the binarizers)
performea the calculations as analog operations. We were able to
aemonstrate an accuracy, or intensity resolution, equivalent to
approximately 6 bits using these techniques. (During this period of
the contract, we reported this work at the Image Understanding Systems
and Industrial Applications session of the annual meeting of the
Society of Photo-Optical Instrumentation Engineers in San Diego, in
August 1976, and &t the 1978 International Charge Coupled Devices
Symposium, San Diego, October 1978. These papers are included as
appenaices.) The rationale for this approach has been that the modern
sensors, in many cases, are themselves analog charge coupled devices
(CCDs) , and thus by structuring the preprocessing to be in the form of
two-uimensional CCL transversal filters, we can simultaneously obtain

*Mr. Nygaard is with the Hughes Carlsbad Research Center.




& number ot parallel real-time processed outputs directly on the

imaging chip itself, as shown in Figure 1.

We have shown that less than (.1% extra silicon area and circuit
compiexity 1is required to provide these processing operations. Also,
since the sensor Gata 1itself consists of analog charge packages
representing the picture intensities, and each of the processing
operations is performea directly in the charge domain [2], we can
maintain the optimum accuracy, linearity and aynamic range, avoiding
the errors and nonlinearities 1inherent in the charge to voltage
transaucers, etc. The processing techniques rely on a non-destructive
sensing approach, using floating gate arrays [3], hence the original
picture elements are also always available. For example,
approximately 2U adaitional CCD stages are required to perform the
five operations described above, which would represent an additional
signal aegraaation of approximately (G.2% (assuming a charge transfer
efficiency of (.vY9yy for a high quality images). This approach is
particularly appropriate for operations such as 1image enhancement,
feature extraction and data compression, etc., where a number of
operations have to be performed directly on each of the pixels in the
sensed 1image. At this stage in the processing, an accuracy of six
bits is probably sufficient for almost all applications, but the
number of operations is very large, typically several hundred million
per second. Analog processing is ideal for such tasks, and the
essentialiy pipelined operation of the 2-D transversal filters can
comfortably handle the computation rates. HKowever, further down the
processing chain, the data rates are typically reduced, while the
required accuracy and dynamic range increases. Hence our approach is
to employ fast analog preprocessors integrated at or close to the
sensor itself anad then follow this by custom built programmable
digital processing wusing highly regular LSI or VLSI designs. For
example, a full processor might appear as shown in Figure 2.

We report on three separate tasks in this report. Section II

describes our continuing work on Test Chip III, to develop high speed

A —— e ——————
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preprocessing functions. Section III discusses the work we have
undertaken on our image processing facility to enable us to operate
our custom built integrated circuits in real-time, and in Section 1V,
we describe an approach to higher level processing such as texture and

segmentation.

I1. Design and Fabrication of Test Chip 111

We have investigated five circuits for inclusion in our third
test chip. These 1include a 3x3 Laplacian operator, a 7x7 kernel,
which we are currently implementing as an edge detector but can be
mask programmed to perform other operations such as the binary
checker-boards or unsharp masking, a 5x5 programmeble filter, which we
intend to integrate with a commercial microprocessor, a 5x5
'crcss-shaped' median and a large bipolar convolutional array for

26x26 pixel convolutions.

For each of these, we have developed circuit concepts which will

enable the data to be processed at recl-time data rates. Circuit
simulations which evaluate the accuracy, speed and hence dynamic-range
nave been completed for each «circuit. The detailed designs and
L layouts of most cf these operators have now been completed and we
estimate that the drawings will be sent to the mask maker by
mid-March. If we are &ble to obtain prompt delivery from the
mask-makers (probably Micro-Fab, Inc.), we anticipate having processed
parts by July, which should allow their evaluation to be undertaken
prior to the end of this phase of the contract in Segptember. The
program schedule is given in Figure 3.

The technology us to implement the algorithms 1is n-channel,
two-phase metal-oxide-semiconductor (MCS) and CCD. The full chip size
is approximately 225 milsx225 mils and conventional photolithography
is employed, resulting in a line width of approximetely 5 um. With
this resolution and by using surface channel technology, a clock rate

/.5 MHz 1is possible. A block schematic and a brief description of
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each circuit 1s given below.

II.A. Laplacian Operator

The Laplacian operator |4] is a bipolar weighting scheme A given
in equation (1) operating on a 3x3 array of picture elements, which
produces a convolution output A * p where p is the unprocessed image
array.

1 -2 &
é = -2 4 -2 (l)
1 =2 !

It 1s used for crispening and edge sharpening. It can be implemented
directly at the sensor using a two-dimensional CCD array consisting of
a set of linear transversal filters. A schematic of the system is
shown in Figure 4. Each filter is a two-phase n-channel device with
eighteen gates. The added latency time for this device is equivalent
to approximately (.5 pixels (- 0.1 HWsec). This is in addition to the
inherent delay of the algorithm of approximately one video line (- 63
usec) . The input to each CCD structure consists of a Tompsett [5]
structure as shown in Figure 5. We have used this input technique on
each of the CCD structures to provide the optimum linearity at the
vocltage to charge conversion.

The circuit uses the floating gate technique to sense nine
adjacent charge packets representing the array of 3x3 adjacent pixels.
As the three adjacent lines of charge, representing the video data,
are clocked through the array, the weighted sum of the charge or pixel
magnitudes, at each clock sample, is applied to an ‘on-chip' sample
and hold. For example the voltage on the floating gate array, sensed
by the sample and held at the nth clock period, T, is
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Figure 5. Schematic of Tomnsett input structure.
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>
i=1 9 (v

VO(nT) = (2)

Sy

wnere CA is the totel capacitance of the array and connecting
bus-1ine, Qj}nl) is the total charge under gate "i" at time nT, and N
is the total number of gates in the array. Further, the charge packet
in each CCD stage, g, is proportional to the corresponding picture
intensity p;, and the area of the individual gates a; determines the
proportion of the charge capacitively coupling to the array. Hence we

can write

qi(nT) = const * pi(nT) (Here the constant relates
to the input characteristics (3)
of the device.)

ana
0. (0P} = a./a qi(nT) (Where a_ is the effective (4)
- = area of 'a full CCD stage.)
Thus
e P (BT
Vy(nT) = const * 2: I~ (5)
. C
i=1 A .

which, for a two-dimensional 3x3 array, can be written in the form of
the convolution




- - - —— —

V., = const *« A * p

0 (6)
where
—
e MR 1 G 1
a7 a8 aq 1 -2 1

Hence the area, a,r or length of each gate, must be proportional to
the elements of A. Since the length of each gate must be a positive _
value, the conventional approach would be to implement A as {

1 2 1
Iajl= j2 & 2 (8)

1 2 1 i

ana connect each of the gates to either a positive or negative bus
line of a adifferential amplifier. In practice, the differential ?
amplifier, which itself can be implemented on-chip in n-MOS
technology, becomes a significant portion of the total area of the
chip, typically comparable, or perhaps even larger, than the CCD array
itself. Further the differential amplifiers are themselves voltage
controlled devices and the charge to voltage transition necessary can
introduce nonlinearities and noise. For this reason, we employ a
Hughes patented Displacement Charge Subtraction technique (DCS) [6],

which implements A directly as
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and results in a 1low capaecitance technique which eliminates

"common-mode" output. This technique has been shown to provide up to

Yu aB dynamic range and 68 dB common mode rejection [6].

The processea outputs from the array are fed directly to
‘on-chip' sample and hold circuits which eliminate clock feedthrough
and rejects coherent noise sources. These circuits have been designed ;
and simulatea to run at 10 MHz data rate, with accuracy eguivalent as :
six-bits. Finally, a source-follower output is provided for measuring
the charge transfer efficiency and for diagnostic purposes.

) iI.B. 7x7 Mask Programmable Kernel

In the April 1978 Semi-Annual Report, a number of processing
algorithms were discussed which wuse a 7x7 array both with a binary
checkerboard weighting for image decomposition, and as a version of
unsharp masking or aeblurring. Because of the interest in this kernel
size, we have built a mask programmable array which can be wused to
form a variety of operators. The basic concept consists of a 7x7
array ot CCD stages which can be operated from seven parallel adjacent
video lines. The basic structure is shown in Figure 6. Each of the
seven linear arrays can be operated at 7.5 MHz with a dynamic range
and 1intensity resolution equivalent to six bits. Again, a source
foilower is included for test and evaluation purposes and to measure
the 1linearity and charge transfer efficiency. We have included two
on-chip sample and holds so that two orthogonal vector operations can
be performed. An MOS absolute value circuit similar to the one we
used on the previous test chip is included so that two combinations of

individual vector operations, such as used in edge detection, can be
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achieved. A schematic of this circuit which has been designed &and
simulated to operate at full video rates is shown in Figure 7. With
this basic structure, we can use a mask change to perform a variety of
aifferent operations. Basically only those levels which determine the
filter weightings and the bus line interconection need be changed to
provide each of the operations discussed in the IPI Semi-Annual
Report, April 1$78. This technique provides a very flexible and cost
effective way of performing a wide variety of 7x7 algorithms.

lnitially, we have designed the mask to perform a 7x7 edge
detection operation with radielly symmetric weights. The weights used

are given by

.08 <17 =25 .34 -25 By .08
=17 .34 =5 .64 -5 .34 - L7

2D =51 .64 1.0 .64 <51 <25

| %

=25  =.51° =.64 -L.0 =-.64 .51 =.25

=7 =34 =51  -064 =.51 -.34 ~.17

=008 —o7 =025 =134 = 95 = 17 -.OgJ

(9)

.08 o L7 o 2 0 — o A g j
A1/ .34 -9l 0 < ol =34 = 7
2D 31 .64 0 =64, =50 =25
Hy = .34 .64 1.0 0 ~1.00 =.,64 =.34
«25 v L .64 0 ~.64 =.51 =.25
ol .34 il 0 =, 9k =,34 =17
| -08 « 17 «25 0 A ) _'OB.J




Figure 7. Schematic of "non-chip" MOS absolute value and summer
CEECcult.




ana the eage-detected output can be written as

si = 'E * H?ﬁl + IE * HXI (10)
A detailed view of one linear CCD array to achieve this is shown in
Figure 8. Here the weightings are arranged to be inversely
proportional to their distance from the center of the array. 1In this
way the edge value 1is concentrated or "focused" towards the center
picture value, and the larger array size gives greater immunity to
noise 1in the sensed image. We have performed a number of simulations
using this operator and have found that on some images, it Iis

preferable to the 3x3 Sobel. An example of this is shown in Figure 9.

We anticipate that the flexibility inherent in this approach and
the options available on the «circuit (sample and holds, absolute
values, etc.) will allow a wide variety of useful operators including
vector edge detection and checkerboard decomposition to be built very
inexpensively.

II.C. 5x5 Programmable Array

One of the most interesting circuit functions available on Test
Chip III 1is a 5x5 array which will be electrically programmable from
external voltages. The programmable approach should allow many of the
image understanding operations of interest, on a 5x5 array, to be
performed with one circuit. The concept is shown in Figure 10. L&
has been designed to accept data at the standard 7.5 MHz video rate
and enable the weighting functions to be changed at the frame rate of
30U Hz. Since each weighting node has been brought out directly to
external pin of the 64 pin package, we can independently vary each
element of the 25 point convolution, with an accuracy of approximately
2%. Further, since our aim is to drive the weights from a commercial
microprocessor, we can in effect null out many of the processing
inaccuracies and nonlinearities to obtain optimal performance. A

schematic of the circuit is given in Figure 11. The concept of the
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Figure 10. Schematic of test system for programmable filter
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welghting technique relies on each floating gate being connected to
the output summing bus through a MOS-FET chain. The gate voltages on

these transistors in effect determine the gain of the weightings.

One of the significances of this approach is that we will be able
to perform extensive experiments to determine the advantages and added
flexibility achieved by incorporating both high speed (7.5 MHz)
parallel analog processing and the lower speed programmable digital
computations avallable from the microprocessor. This should put us in
an excellent position to proceed with our higher level processing such
as segmentation based on analog features, as discussed in Section IV,
and also give us valuable information about the low level-high level

interface.

ILI.D. 5x5 "Plus-Shaped" Median Filtering

Both USC IPI and Hughes Research Laboratories (HRL) have done
extensive simulation on median filtering. The median operator is an
obvious candidate for preprocessing and can be very useful for both
rejection of impulsive noise and to overcome defects in the imaging
system, etc. Both HRL and IPI studies show that a "plus-shaped" array
with nine pixels 1is optimum for many of the images of interest.
Perhaps the most direct approach to a median filter is to perform a
sort operation and then choose the fifth element in the stack (for a
5x5 cross). 7To do this, n(n-1)/2 or 36 comparators are required. The
conventional approach 1is to form the ladder network of "bubble-sort"
array shown in Figure 12 for five inputs. Here each comparator module
(CM) has three basic states, depending on the relative magnitude of
the two inputs "a" and "b." In the configuration shown, if a>b it acts
simply as two parallel one element delays. For b>a however, it acts
as a cross-bar switch reversing the two outputs. The effect after a
total of six comparisons is to provide nine parallel outputs order in

increasing magnitude, whereupon the center output is the median value.
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This structure can be built directly in MOS/LS using MOS-FETs to
provide a result equivalent to 7 bits, and run at 7.5 MHz. It can
also be built very effectively as a compact CCD structure. 1In either
case, 1t can be built 1in to a modular design which will allow the
array size to be increased by adding parallel chips. Our present
design is a direct MOS implementation which uses external delays which
determine the pixel array shape. In this way we can perform the
operation over a variety of kernels.

I1.E. 26x26 Bi-Polar Convolution Filter

We have included on this chip a processing algorithm suggested by
Professor David Marr and his colleagues at MIT. It can be used as
part of the preprocessing required for a human vision sytem. From a
technology stendpoint, 1 is interesting because it has a
significantly larger kernel size than the arrays built to date and
requires Lijh accuracy. The full kernel 1is shown in Figure 13,
consisting of a 26x26 element with a weighting range of approximately
L5150 In order to provide the most conservative approach and hence
the highest probability of success, we have built a 26x13 element
array and intend to use two chips for the full convolution. The
circularly symmetric nature of the required convolution allows two
identical arrays to be used with modified input structures, as shown
in Figure 14. Further, we have decided to build the array with three
separate outputs which will be helpful in the test and evaluation
stage, and more significantly, has enabled us to scale or normalize
the weighting to achieve higher accuracy. As shown in Figure 15, w«
have normalizea all the weightings such that they lie within & rana

of 1 to 15. To do this, we have built all the negative weights
f outer rim starting at 0 and decreasing to -15 and going back t«
on a scale where 8 m reoresents one unit of weighting, 1.
gate lengths of U to 134 m. These gates are each conne
summing bus and brought to the negative input of an
differential amplifier. The single annulus of weights

zero to +15 are also built on the same scale and broug
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opposite polarity input of the differential amplifiers as shown. In
this way, a bipolar outputs representing input values -15 to +15 is
available from the amplifier. The remaining weights ranging from +15
to +126 have all been normalized by division by 8 to again bring them
approximately to the range of 15. These gates are therefore drawn at
one-eighth scale relative to the other but an off-chip amplifier with

a gain of 8 will be wused to provide the required weightings. A

schematic of the full circuit is shown in Figure 16.

i II.F. Status of Test Chip III

i Each of the above circuits have been designed, simulated and the

. final layout is near completion prior to sending out to the
mask-maker. We anticipate the mask making will take 6-8 weeks and the
silicon processing at Hughes will take approximately 6 weeks.
Processed parts will therefore be available in July.

I1I. Test Facilities and Development of Necessary Peripheral

Circuitry

In order to both test electrically and later perform the detailed
performance evaluation of each of the above circuits, it is necessary
to build a number of specialized circuits. These include video 1line
delays for signal formatting, CCD clocks, analog driver circuitry and
some specialized interfaces beteen the video sensor (typically a
vidicon), the microprocessor and our custom integrated circuits. Also |
as in our CCD structures we have not addressed the problem of video |
line delays or other picture formatting circuits, we have had to build 1
external formatters. For the 3x3 arrays, used in the previous phase '
of the program, we employed two commercially available analog CCD line
delays (CCD321) to obtain the necessary three lines of video. Since
much of our future work on the program will concentrate on digital
approaches, we have tried where possible to build the external control
and interface circuits in digital technology. This will allow us to
operate all the interface and formatting electronics, the sensor, tour
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processor and, when appropriate, the microprocesor from the same

master clock. To date we have designed and are nearing the completion
of a six line delay, using commercial digital circuits to provide the
seven adjacent lines which will be used for our 3x3, 5x5 and 7x7
processing. Initially the larger array (26x26 pixel kernel) will be
tested in a modular way prior to building the necessary 14 1line box.
We have also started analysis and design work on the necessary two
phase clocking system and the diffusion pulses and resets, etc. This
work will continue during the next six month period.

A full schematic of the new test facilites required to exercise
our circuits is shown in Figure 17. We have decided to incorporate a
scan converter system as shown which will allow us to vary both the
spatial and temporal resolution of our processing. The architecture
of this system has now been designed and we are starting some of the
detailed design and fabrication which we will discuss in more detail
in the next report.

IV. Concept Developtment for Higher Level Processing

As stated earlier, it is our philosophy to perform all, or much,
ot the low-level preprocessig functions by high-speed parallel analog
operations. The essentially pipelined structure of the CCD
transversal filters make this approach optimum for operations
requiring a relatively low number of computations on each pixel. At
the higher level where successive multiplications or high order powers
of essentially analog (or six bit) intensity 1levels are often
required, the dynamic range and accuracy requirements essentially
preclude analog operation. We have spent a considerable amount of
time 1in this phase of the program addressing this issue. As a
specific operation to analyze, we have chosen the texture processor of
Protessor W.K. Pratt [l1]. A schematic of this operation is given in
Figure 1b6. It consists basically of a Sobel or Laplacian operation
followed by moment operations of the form
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5 —.n
M = 2 (p,-P) (11)

where P, is the analog picture intensity, p is the average picture
intensity over a given sized kernel and N represents the number of
pixels in the kernel, n is the order of the moment, typically 1
through 4. From our previous work on this program we already have
much of this hardware available. For example, the Sobel operator, the
Lapiacian and the local averager have all been built and demonstrated.
The kernel size in our work to date (in Test Chip I and II) is limited
to 3x3, but in our later circuits (Test Chip III), we will demonstrate
, a 2bx2o pixel kernel. For effective texture analysis, a 225 element
array (15x15) is apparently sufficient and hence we anticipate little

difficulty in providing a sufficiently large kernel. However, if we
i assume the original pixel intensity can vary over 6 bits or 1 part in
64, we can, under the worst conditions, anticipate a required output
dynamic range of 24 bits or 1 part in 10 [7]. This clearly is far too
large for a direct analog implementation. Particularly as in

subsequent processes, we might expect to calculate small differences

of very large numbers (between the normalized third and fourth moment,
for example). A digital approach seems to be essential on these
grounds.

At first sight, it might appear that if we calculate (pi-g 3
directly, since the individual picture elements pj are typically
closely distributed about the local mean p, (pi-ﬁ) will be a small
number . (This will of course, be true for those images which have a
low variance.) However, this approach causes considerable difficulty
in the computation. For example, for each new picture element, which
will occur approximately every 100 nanosec, we will be required to
calculate Z(pi—ﬁ)n in its entirety, because p will also change at the
pixel rate. For a 15x15 window, calculating Jjust the first four
moments, this will result in a through put of 1.3x1010 operations per
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second, the majority of which will be multiplications. This is
clearly an inappropriate approach since a high speed multiply might
take 5u nanosec or more in the fastest high speed
emitter-coupled-logic (ECL) technology resulting in approximately 10
mins to process one frame. Several hundred channels would be required
in a parallel architecture, requiring a very large amount of power and

circuitry, to achieve real-time operation.

Clearly a preferable approach is to perform the non-centered

moments
il
My = ﬁiﬁ(pi)
el 2.1 2
M2 Nz(lei) +ﬁ)3 <
3 (12)
e Y 3.3 2 1 3
By = oattRlis gt e, Rt
N
- 4,6 2 2 4 3 1 4
My N4(21>i) +szi (Zp;) -N—22pi (Zpy)+gip;

In this way, the partial products can be calculated and stored, and
with each new pixel we are required only to subtract the contributions
of the oldest pixel from the summation and add the newest. This can
reduce the calculation rate by several orders of magnitude and enable
real-time or near real-time operation.

~ We have spent considerable time configuring an architecture which
would be built from a number of identical modules and hence be
appropriate to the new generation of LS and VLSI design techniques and
can be implemented 1in present state of the art technology. Our
technology choice again would be MOS/CCD primarily because of the
lower power and small size of the CCD logic elements [7] and because
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an integral part of the processor would consist of serial high speed
memory - a capability for which CCD/MOS is ideally suited. Hughes
Research Laboratories, as part of our own internal research program,
has designed and demonstrated all the standard logic functions using
CCD technology. We have also demonstrated high-speed, low-power
binary addition using a novel CCD ripple adder technique which should
allow us to perform the necessary full addition in a single clock
cycle. We are currently investigating the optimum structured design
for the LS1/VLSI circuits, which will enable us to demonstrate the
concept in the next phase of the Image Understanding Program.
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APPLICATION OF CHARGE-COUPLED DEVICE TECHNOLOGY TO
TWO-DIMENSTONAL IMAGE PROCESSING®

G.R. Nudd P.A. Nygaard
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Carlsbad, CA 92008

Hughes Research
Laboratories
Malibu, CA 90265

Abstract

This paper describes the application
of charge-coupled device (CCD) technology
to two-dimensional image processing. The
processing operations discussed are widely
used as preprocessing functions for more
complex image understanding techniques.
Algorithms such as edge detection, local
averaging, and unsharp maskingl’2 have been
implemented directly in the charge domain
using extensions of the analog transversal
filtering techniques previously demon-
strated. The design concepts and circuit
layouts are discussed together with the per-
formance data on test imagery and '"'real-
time" video.

1. Introduction

In the past several years, there has
been a significantly increased interest in
image enhancement and image understanding
both for commercial systems (such as
industrial inspection) and for military
sensors. The processing algorithms and
techniques developed have generally been
implemented on general-purpose digital com-
puters, and, in general, the processing
times required to perform even relatively
simple operations, such as local edge
detection, have limited their use to non-
real-time applications. The Sobel edge-
detection scheme3 described here, for
example, requires approximately 5 x 106
operations per frame and might take 5 to
10 sec on a PDP-10 machine. This is two to

C.L. Jiang

Hughes Aircraft
Company
Culver City, CA 90230

three orders of magnitude slower than is
required for '"real-time' video (= 7.5 MHz).

Since low-level or preprocessing
operations typically require the greatest
computation time, one would generally want
to use the preprocessor to dramatically
reduce the data rate. This would allow the
higher level operations (such as the so-
called syntactic operations) to be per-
formed at much lower throughput. The aim
of this work is to investigate the feasi-
bility of performing several commonly used
preprocessing operations in CCD circuitry
and thereby to increase the processing
speed to allow real-time operation. CCDs
were choosen both because they have inher-
ently low power-delay products (which
allow very high circuit densities) and
because many modern sensors are themselves
CCDs. In this way, the preprocessing
functions might be incorporated directly
into the sensor as options. This is the
basis of the so-called "smart sensor"
philosophy. The functions described here
are edge detection, local averaging,
adaptive stretch, binarization, and unsharp
masking. The formulations of each of these
algorithms is given in Section 2. Where
appropriate, we have tried to structure
the processing in the form of analog trans-
versal filters to achieve optimal-speed and
circuit density. This has required the
development of two-dimensional filtering
operations and novel circuit techniques
to perform operations, such as absolute
value determination, directly in the charge

*
This work was supported in part by a subcontract from the Image Processing Institute of
the University of Southern California under Contract No. F33615-76-C-1203 from the

Defense Advanced Research Projects Agency.

-197-




domain. This should provide optimal
dynamic range and linearity.

2. Definition of Processing Algorithms

Five preprocessing operations have been
implemented. Each is based on a kernel of
3 x 3 pixels, shown in Figure 1. The first
test circuit is a CCD implementation of the
Sobel edge-detection algorithm.3 This cir-
cuit was chosen because it demonstrates two
operations important to image processing:
(1) the possibility of achieving a two-
dimensional convolution with arbitrary
weightings and (2) the ability to perform
nonlinear functions such as the absolute
magnitude operation.

7819-1

PIXEL
INTENSITIES

d e
] h i
Schematic of the basic 3 x 3

Figure 1.
: kernel.

The Sobel algorithm operates on the
full array and evaluates
S(e) = 1/8 [|(a+ 2b+c) - (g + 2h + 1)]

+ |(a + 2d + g)

- (c+2f + 1)) (1)
for each picture element. This output is a
measure of the edge components passing
through the kernel and is independent of
both the polarity of the edge and, to a large

extent, its orientation. The other oper-
ations are

Local averaging:

fm(e) =1/9 [a+b+c+d+e+f
+ g+ h+ 1] (2)

Unsharp masking:

Su(e) = (1 -a)e -a fm(e) (3)
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Adaptive binarization:

‘ 1 for fm(e) <e
Sb(e) = l (4)

0 for fm(e) > e

Adaptive stretch:

2 Min {e,r/2} for fm(e) <r/2
Sa(e) = l (5)
2 Max {(e,r/2),0} for fm(e) > xl2,

where r is the maximum pixel intensity.

All of the above operations can be
obtained by combinations of three basic
functions: the local means f(e), the edges
S(e), and the center pixel intensity. Each
of these functions can be obtained directly
from the CCD analog transversal operations
described below.

3. Device Descriptions

The CCD implementation of two-dimen-
sional edge detection and local mean
algorithm is an important aspect of many
real-time image-processing applications.
Further, since the functions discussed in
Section 2 can be derived from combinations
of center pixel intensities, local means,
and edges, only the CCD edge detection and
local mean circuits will be described in
detail.

The CCD Sobel circuit consists of a
3 x 3 two-dimensional transversal filter,
an absolute value operator, and a summing
circuit. Figure 2 is a functional block
diagram for the circuit. Three lines of
analog video signal are fed into the 3 x 3
CCD Sobel transversal filter. Two differ-
ential outputs are obtained and amplified
before taking their absolute values and
summing. The final output |a+2b+c -
(g+2h+i) | + |at2d+g - (c+2f+i)| provides
edge inform:tion about the image (as is
shown in Section 4). Other input and output
points are also available for individual
circuit tests, as indicated in Figure 2.

The CCD Sobel circuit has three par-
allel signal channels for the three analog
video lines of the image. The inputs are
of the Tompsett fill-and-spill type. The two-
dimensional “processing results from the
appropriate inter-connection of the eight

e sl i) — J
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OUTPUT: +]a+2d+g-(c+2f+i)
Figure 2. Block diagram for CCD Sobel

operator.

floating gates of the three-channel split-
electrode transversal filter. Figure 3
shows that the output in each of the four
bus lines is proportional to the charges
under the connected gates (a, b, c, etc.).
The necessary weightings (1, 2, 1, etc.) are
achieved by varing the floating gate area.
The differences between the weighted sums
are obtained through the output differential
amplifiers. Each output, therefore, repre-
sents an orthogonal edge component. These
components then act as inputs to the gates
of the CCD absolute value circuit shown in
Figure 4 to achieve the two-dimensional
Sobel output.

The CCD absolute value circuit operates
using a novel technique that allows a charge
storage that is equivalent only to the input
signal magnitude and is independent of
signal polarity. During the input phase,
dINA is pulsed low first (high surface
electron potential in an n-channel CCD) and
then settles high (low surface electron
potential). When the signal voltage Vgig

7819- 3

a+t+2b+c
~(g+2h + )

S0 vl st
TR .
a c
CHANNEL 1 .
— | »| 2
a c
S 2 X2
CHANNEL 2 _# » %, " &
AN X = XN
9 i
CHANNEL 3 -2
> | L | LEZd
9 i
e oI lgc'/;glg YR

at+2d+g
-(c+2f+1i)

SOBEL GATE CONNECTION

Figure 3. CCD Sobel preprocessor.

is less than the reference voltage V set
by the REF gate, the electrons will fill the
potential well under the gates B2 and FZ,

as shown in Figure 4(a). During the output
phase, ¢gyta is pulsed high and the charge
packet is transferred to the summing output.
This charge is proportional to

‘(VFZ E VREF) (AFZ g Aaz)

l
i (VREF . Vsrc) (Apz & ABZ): '
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the absolute value of the input signal is

. obtained. After the absolute values of
B SIG Fz foura Vscm  FseT the differences are obtained, they are
9 o summed in the charge domain and the Sobel
B WngL‘ = e operation is completed. The CCD local
ik = mean circuit shown in Figure 5 consists of

v 3 x 3 cells with nine floating gates con-
nected together to yield an output pro-~
181G portional to at+b+c+d+et+f+g+h+i.

‘i' The gate interconnect of the 3 x 3 CCD
REF | [ two-dimensional filtering circuit has to be
T laid out carefully to minimize the stray
X\ capacitance and to balance the positive
bz and negative input to the differential
amplifiers. In the CCD absolute value
circuit, speed and accuracy are, in the
case of Vgig > VRgF, limited by the transfer
(@) Vg <VREF inefficiency.

il
U

Qpurt - FZ + |SIG|

The CCDs are N channel and are fabri-
cated with a two-layer polysilicon process.
This process requires nine masks and two
ion implantations. The CCDs have a bit

1SIG|
REF 1
7819-5
T |
Qqgyt - FZ + ISIG] AT AT -
/ 2595 ¢ )
) Vg6 >VRer CHANNEL 1
—_ a b c
Figure 4. CCD absolute value circuit. Z;"l' > Y {
where Apz 1is the rate of the gate FZ, etc. i e = - )
The first term corresponds to the fat zero CHANNEL 2
charge and the second to the signal charge —_—p | d e f
referred to the reference level. However,
if Vgig is higher than Vggp, the potential
well under Bl, SIG, B2, and FZ will be 2 % /
filled, as shown in Figure 4(b). The output /] /éq LN ‘
charge is proportional to
CHANNEL 3
s G I TR 8
'(VFZ 3 VREF) (Arz i Aaz)
Y, 2
+ (v -V A.__ + ) %//// (AL
I SIG REF SIG ABl s

| If the gate areas are fabricated such that i

| Agic + ANl = Afz t Agys then the output atb+tctdte+t+g+th+
‘ charge will always be a fat zero plus the

L charge proportional to the magnitude of

1 the signal with Vgpp as reference point.

That is, a charge output corresponding to 200 Figure 5. CCD local mean circuit,
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lengtn. of 27 um, and the minimum feature
size is 2.5 um. This results in a total
area of 0.7 mm? for the Sobel (see Fig-

ure 6(a)), of which 0.15 mm? is the trans-
versal filter. This compares with a total
area of 0.6 mm2 for the mean filter

(Figure 6(b)). To achieve the necessary
capacitance balance between the two differ-
ence outputs, additional metal was added,
as Figure 6 shows.

(a)

Figure 6. Photomicrographs of
(a) the edge detection
circuit and (b) the local
mean filter.

4. Test Results

a. Measurement of Electrical Character-

istics.

The two basic functions of the CCD cir-

cuits, arithmetic operations (such as
absolute magnitude determination and sum-
mation) and transversal filtering, have

been tested independently and the transfer

characteristics measured. The weighting
functions of the transversal filters for
the Sobel edge detection and local mean

evaluation, for example, can be written as:

1 2 1
S = 1/8 0 0 o0
X
1 -2 -1
i ]
1 0 -1
s =1/8 2 0 =2
y
1 0 -1j
101 1
W o=1/9 1 1 1
m
11 1

where S, and S, provide the x and y com-

ponents of the edge values, and Wp provides
the mean. Both the impulse response and the

linearity of these operations have been
determined using the microcomputer-based
test set-up shown in Figure 7.

Here the microcomputer is used to

provide flexible and programmed data inputs

to the CCD circuits. These data are then

clocked through the devices, and the output

is stored in the computer memory. This
provides an accurate and rapid means of

characterizing the device performance as a

function of the various input parameters.
The speed and accuracy of this svstem are

basically determined by the computer cycle

time and the analog-to-digital convertc:s

The machine described here has a basic cycle

time of = 2 usec and can provide an 8-bit
quantization, resulting in a maximum CCD:
clock speed of = 30 kHz.
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Figure 7. Microcomputer-based test facilities.

When a single input pulse with a
duration of less than one-half clock cycle
is used as the input, the output is equiv-
alent to the impulse response of each com-
ponent of the filters. Examples of this
for the Sobel operation are shown in
Figure 8.

An additional benefit of this test
set-up is that a unique pattern of either
analog or digital data can be generated
and used as the input to the CCD circuit
and the output data gated so as to uniquely
determine the operation of any tap within
the array. For example, if an input that
linearly increases with time is clocked
into the array and the output is gated so as
to measure only the nth output pulse in each
cycle, the weighting W, of the nth floating
electrode in the array can be uniquely
determined. Measurements made in this way
are shown in Figure 9, which shows the out-
put voltage directly as a function of the
input for each of the nine floating gates
in the Sobel filter. The slope of each
input/output characteristic gives the tap
weighting for each tap. From this, inputs
can be shown to be linear over approximately

-202-

e

a 3-V range. This translates to an accuracy
and dynamic range equivalent to approxi-
mately 16 gray levels.

The absolute value circuit described in |
Section 3 was tested using a similar tech-
nique; the results are shown in Figure 10.

Here the input voltage on the gate SIG has r
been swept over a range of 0 V to 10 V, ;
and the characteristic can be explained with
reference to Figure 4. Initially, as the

signal voltage is increased, charge flows

over the input gate and is stored under

gates FZ and Bl. This charge is then clocked
out as the clock phase changes. However,as

the input voltage is increased beyond V;inq1
(Figure 9), the bucket size decreasscs

linearly, resulting in ihe linear change in
voltage out (AB). When the input voltage
reaches Vppp, the bucket size is a minimum d
equivalent only to the fat zero. Increasing

the input further causes some of the charge
previously trapped under Bl to be clocked

out. Thus, the output characteristic again
changes linearly from B to C. Hence, when

the input cignal is operated about VRpgfp, the
output changes linearly in proportion to

|VSIG - vREF" the output polarity being
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Figure 9. Measurement of the weighting
S functions for Sobel operators.
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Figure 8. Measured impulse response of
CCD Sobel filter.

independent of Vgyg. The input voltage
swing, as shown in Figure 10, is approxi-
mately * 2 V, resulting in an output change
of some 400 mV. This is again equivalent to
an accuracy of approximately 4 bits.

OUTPUT VOLTAGE

b. Performance Evaluation of the Processor.

The processor has been tested on true two- INPUT VOLTAGE

dimensional imagery using both a stored data
base and a real-time input from a commercial
vidicon. The use of a stored data base Figure 10. Transfer characteristic of

allows most of the problems associated with absolute value circuit.
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7819- 9
the sensor, such as illumination, resolution,

and signal-to-noise ratio, to be separated
from the evaluation of processor performance.
The maximum data rate of this system, how-
ever, is limited to about 30 kHz. 1In this
mode, the imagery to be processed is first
digitized and stored in the computer

memory, as shown in Figure 7. (In practice,
a very large data base is available on
magnetic tape and has been used extensively
in the performance evaluation.) The stored
data are then clocked out of the random
access memory in synchronism with the CCD
clocks and converted to analog data before
entering the processor. The processed

data from the CCD are converted again to
digital format and stored in the computer
memory in the form of 128 x 128 four bit
words. Direct memory address is then used
to refresh a standard video monitor.

(a)

ORIGINAL

An example of this is shown in Fig-
ure 11 for a two-dimensional test pattern.
A comparison of the output (Figure 11(b))
with the computer simulation (Figure 11(c))
shows that an accuracy of approximately
four bits is preserved. An example of its
operation on a real image is shown in
Figure 12.

(b)

In addition to the tests on stored data,
we have interfaced the processor directly
with a commercial vidicon camera. The
standard operating frequency of this "real-
time" video is = 7 MHz, providing 525 x 525
picture elements at 30 frames/sec. At CHIP TEST
present, we have operated our CCD processor
at a maximum clock rate of 4 MHz, which
provides the full 525 vertical resolution
elements but about a three-to-one resolution
loss in the horizontal direction. An example
of the performance in both the local-
averaging and the edge-detection modes is
shown in Figure 13. Two other functions,
unsharp masking and binarization (both of
which are performed in real-time by our CCD
processor), are also shown.

5. Conclusions

The concepts and design details of a
CCD image processor that performs two-
dimensional linear and nonlinear operations
are discussed. Our results indicate that it
is feasibile to use a CCD integrated cir- COMPUTER TEST
cuit approach for the image preprocessor.
The operations described are used as the

basis for higher-level syntactic type of Figure 11. Example of processor operation
image processing, which is becoming on stored test data (at 30 kHz).
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Figure 12.

UNSHARP MASKING

Figure 13.

increasingly important in military systems
for target acquisition and tracking.
Typically, however, most of the processing
time is taken up in the '"preprocessing"

type operations, and our present indications
are that the CCD techniques are able to
operate with at least 4-bit accuracy at
speeds 100 to 300 times faster than the
conventional general-purpose processor used
to date.
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A CHARGE-COUPLED DEVICE IMAGE PROCESSOR FOR SMART SENSOR APPLICATIONS*

G. R. Nudd, P. A. Nygaard,! G. D. Thurmond, and S. D. Fouse
Hughes Research Laboratones
Malibu, Calitormia 90265

This paper describes the development and performance demonstration of two charge-coupled
device (CCD) chips for image processing. The aim of the work is to demonstrate the feasi-
bility of developing custom CCD architectures that will enable the time-consuming, low-
level processing functions (such as feature extraction) to be pertormed in real time. We
describe the circuit concepts and device layout for six commonly used algorithms and
include photographs of the raw and processed imagery.

1. Introduction

lhe successful application of many of the currently discussed image analysis techniques
will depend ultimately on the speed and accuracy with which they can be implemented. Many
of the more sophisticated algorithms developed to date have been demonstrated only on
general-purpose computers, and the resultant processing rates, cven for resolutions equiva-
lent to standard quality television, are several orders of magnitude too low for 'real time"
display. Simple preprocessing functions, such as edge detection and local averaging,!!,-
might take from several seconds to minutes per frame. For example, the edge-detection tech-
nique described below has been implemented in machine language on an 8080A microprocessor
and takes about 100 sec/frame. More sophisticated algorithms, which might require the
adaptive combination of several functions (e.g., edges, means) with the center picture
element, will require correspondingly larger processing times. In general, it is desirable
to operate at speeds equivalent to commercial television, with approximately 525 x 525
pixels at 30 frames/sec. This not only provides the spatial and temporal resolution
required by most systems but enables standard television hardware to be used at the
interfaces.

Some development work in which commercially available circuits were used to perform
specific image preprocessing functions has been reported. (> In general, these approaches
result in a large number of integrated circuit (IC) packages and are not well suited to
"smart sensor'" applications. Until relatively recently, the computational complexity of
the algorithms has precluded the use of a single IC to process the data. However, the
rapid progress in technologies such as charge transfer devices and metal oxide semicon-
ductors (MOS) with inherently low power-delay products has resulted in a very significant
increase in the available throughput.

Charge-coupled devices (CCDs) are of particular significance to image processing because
they can be used in both image detection and processing. Further, they can be configured
to provide an especially simple and direct means of performing two-dimensional convolutions,
which form the basis of much low-level image processing. The low power requirements,
typically two orders of magnitude lower than the conventional bipolar circuits used in main-
frame computers, and the small device gecometries mean that highly parallel approaches can
be used to achieve full-frame processing. One such concept is shown in Figure 1. Here a
CCD imager or analog store is used to store a full frame, and the data from the N rows are
clocked out in parallel into N parallel processing circuits. Each circuit might perform
the Sobel(4) operator, for example, and process the data for an entire line, with the
processed output appearing at the clock rate fc. Thus, an entire frame would be processed
in Nfe sec. For a 525 x 525 frame, this could be about 50 psec. Further, by performing
the processing directly in the charge domain, thus avoiding the charge-sensing amplifiers
necessary to drive conventional discretes, greater accuracy and linearity and larger dynamic
range can be obtained, both of which are crucial for high sensitivity.

This work was supported in part by a subcontract from the Image Processing Institute of
the University of Southern California under Contract No. F33615-76-C-1203 from the
Defense Advanced Research Projects Agency, and Contract No. DAAK70-77-C-0216 from the
Night Vision Laboratories, Ft. Belvoir, Virginia.

Mr. Nygaard is currently with the Carlsbad Research Center, Hughes Aircraft Company,
Carlsbad, California.
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Figure 1. Parallel processing concept.

This paper describes the development of a two-phase, n-channel CCD processor that can
perform seven basic preprocessing algorithms. The devices are fabricated on single
200 mil x 200 mil chips and have been operated at 2 MHz with an accuracy of 4-bits.

Examples of their performance when interfaced to a stored data base via a 8080A micro-
processor and when operated directly from a commerical vidicon camera are included.

2. Algorithm Definition

In principle, the CCD processing techniques developed here can be applied to any size
kernel. The optimum choice, which will depend on the overall system requirements, will
general represent a trade-off among noise immunity, resolution, and dvnamic range. We
arbitrarily selected a 3 x 3 array, as shown in Figure 2.

in
have

3 x 3ARRAY OF PIXELS
fix—-1,y+1) il v+ 1) fillx + 1,y t 1)
fix -1,y f(x, y) il + 1 y)
fix-1y-1) filx. vy — ¥} fix+1,y-1)

Figure 2. Kernel used for processing algorithms.

The aim of this work was to implement the algorithms on a single silicon chip and
demonstrate the use of the 3 x 3 kernel as a control signal for linear and nonlinear as

well as spatially invariant and variant (or adaptive) signal-processing functions in two
dimensions.

Many algorithms have been developed for these tasks, and the nonlinear techniques
probably have been the most successful. However, all algorithms could be envisioned as

being designed around three control signals or two-dimensional functions.

These three
signals are

Original image = f(x,y)
Blurred image = fy(x,y) (1)
Sobel of image £ (%5 ¥)

"

The blurred image,representing the local coverage, is obtained by convolving f(x,y) with a
3 x 3 kernel with entries that are all unity. The Sobel image, representing the ecdge

image.

detected output, is obtained by passing the 3 x 3 Sobel operator over the original
Thus,

e T
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£.0x,y) = £lx.7) B |1 11 (2)

£ Dxoy) = F E0x¥] ®loo0o

(3)

Figure 3 presents these three functions on two images, a "house" and an '"aerial reconnais-
sance'" scene. The former has a large dynamic range, while the latter has a small dynamic
range.

An example of a simple use of these control signals is the linear combination of the
mean and Sobel image:

glx,y) = (1-1) £ (x,y) *+ A (x,y) (4)

where

ORIGINAL IMAGE BLURRED IMAGE SOBEL OF IMAGE

N

ORIGINAL IMAGE BLURRED IMAGE SOBEL OF IMAGE

Figure 3. Computer simulation of the three control signals.
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This is shown in Figure 4(a), in which the Sobel edges are emphasized. A\ more familiar use
of these control signals for edge enhancement is in the "unsharp masking" uppli(Alinn,‘]
shown in Figure 4(b), in which a percentage of the blurred image is simply subtracted fro

the original:

(a) (b)

Figure 4. Examples of linear combination of control
signals. (a) Mean pnlus edges. (b) Unsharp
masking (original-mean).

Ihe examples shown in Figure 4 are of nonadaptive algorithms, which lack the sophistication
nceded for the inherently nonstationary nature of imagery. \n adaptive stretching
algorithm in which the brightness of a gray level is doubled depending on the value of
fﬂ(x,v» was implemented:

‘min(f(x,yl, r) LBy <
gyl =22 ‘ > ((
'mwx({{x,y) - r, 0) f e S
where r = mid-gray. Hence, if the local mean is less than mid-gray, the center pixel i
essentially passed through a function memory that has a gain. Fhe objective is to enhancc
the darks and simultancously enhance the brights without saturation in either case.

A further adaptive function, one which compares the original picture element with the

local mean and provides a binary output according to
‘1 Flx,¥v) £ (%)
) "l -
(x,¥Y) = s
ln 1 (Esy)e Im[\,yl
has also been implemented

Many other adaptive functions can be performed using these basic control functions,and

the results of this work will be reported in another paper.
3. (CED Circuit Development

i 3 : SRt 3 2 .

Ihe CCD technology developed in 1970'7’ is particularly advantageous for the development
of "smart sensors." It is an inherently low-power technology with a power-delay product of
= 10"~ pJ (as compared to 50 pJ for a typical bipolar), which allows high througl nd
circuit complexity to be attained. In addition, the basi¢ CCD styructure can be
both sense and process the data. C(CD arrays are currently availahle that provide optical
imaging capabilities equivalent to standard television. It is envisioned that; with ITittle
added complexity, the type of processing functions discussed here could be I
lirectly at the focal plane providing a range of processed and unprocessed

lThe ha ¢ CCH structure g 1llustrated in Figure 5, where a two '(\‘Hl\k y R=Type i ace
channel delay line is shown. The concept involves the shifting of a controllec 1rQac

cket at the Si-Si0, surface. The stepped gate structure ensures that the charge moves
2 J A adha i
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Figure 5. Concept of the CCD analog delay line.

in only one direction in response to the clocking waveforms illustrated. In our appli-
cation, a charge equivalent to the intensity of each successive picture element is clocked
into the device at cach cycle. This requires that the clock speed be equivalent to the
bandwidth of the analog video signal. The key to most signal-processing applications is a
floating gate structure in which a single electrode capacitively couples to the signal

! charge across the oxide:

¥ o= Qe

where Qg is the signal charge, Cyy, is the oxide capacitance, and Vs is the corresponding
output signal. Since the oxide capacitance Cyx is equal to eAftyy,» where A is the gate
arca, the outputs can be weighted by simply varying the gate length W. as shown in Figures 6
and 7. The output then becomes Vo = Qg(t) # W(*), where * is the convolution junction.

This is the basis of the CCD analog transversal filter. In our case, since we are operating
on two-dimensional data equivalent to the 3 x 3 array, the parallel structure shown in Fig-
ure 6 is necessary. Here, three adjacent lines of video data are clocked in synchronism
through the structure, and the output is taken from the array of nine identical gates shown.
In this case, the output as a function of time t can be written

Yl(t) ERV O [ Yl(t = 2,

1
Vm(t) =RWER-RIRVES T R SRVES (FER= S (e =) : (8a)

\S(t) o Ys[t = e Ys(t = )

where t is the running time parameter, T is the clock period, and W is the effective gate
weighting. In the spatial domain, this is equivalent to

fl il

S ANEY | 3 (8b)
) S8

which corresponds directly to the blurr or local average function described in Eq. 2.

Ihe equivalent structure for the Sobel edge detection is shown in Figure 7. Two types
of operations are involved in the calculation of the Sobel algorithm. The first is the
charge sensing and weighting necessary for the detection of the orthogonal edge components:

Sy = fix=L,vel) * 2Ex,¥y+t1l) = fix*l,y=1) =« Eix=T y=1) * 2F(x;y-1) = f(x«lyy-1)
(9)

"

E(x-1,y*1) + 2E(x-1,y) ¢ £lx-1,v-1) - E(x+l,yel) * 26(x+l,y) * f(x+l,y-1) .
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Figure 6. Floating gate array used to
obtain blurr fm(x,y).
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Figure 7. Schematic of CCD Sobel circuit.

The second is the purely algebraic operations, including absolute-value determination and
summation. The gate interconnections shown perform a two-dimensional filtering operation
with weightings equivalent to

(2 1 A3 142 0 12
Wx=1]0 0 0 PRRES U o | (10)
A S -1/2 0 1/2

for the x and y directions, respectively. Variations in the area of the floating gates
(as shown in the figure) are used to achieve the weighting coefficients (1/2, 1, etc.).
The outputs Sy and Sy go into a CCD absolute-value circuit and are summed as shown to form
the complete Sobel fg(x,y). In this way, a valid output is computed each clock cycle.
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4. Performance Evaluation ol the Processor

The two test chips that perform all the algorithms discussed in Section 2 are n-channel,
two-phase CCDs with an approximate area of 200 mils x 200 mils. In our present experiments,
we have operated the circuits in two modes. The first used the University of Southern
California's stored data base. The data is formatted by an 8080A microprocessor prior to
processing; this limits the speed of operation to about 10 kHz and 4-bits intensity resolu-
tion.® The performance of the devices in this mode is shown in Figure 8. We estimate the
overall accuracy of the devices to be better than the maximum 4-bit display capability.

More recently, we increased the clock rates to approximately 4 MHz with a resulting accuracy
and dynamic range equivalent to 16 gray levels. A schematic of this test set up is shown
! ’ in Figure 9. The input signal is derived from a vidicon camera with an interlace format as
i shown. A CCD analog store, the Fairchild*® CCD 221 chip with a 488 x 380 element array, was
used to provide a single field delay that enabled the interlace format to be removed. Two
analoyg line delays were then used to provide access to three adjacent lines of video to
allow continguous processing. These three lines then provided the data input to the proces-
sing arrav: the output is then mixed to form standard composite video for display on the
video monitor.

lo provide the maximum quality output from this system, the master clocks should be
operated at 7.5 MHz. This would result in a resolution of approximately 525 x 525 lines.
In the experiments reported here, we operated at approximately a 3.75-MHz clock rate. This
resulted in a full resolution of 525 lines in the vertical direction, but a degraded per-
formance in each horizontal line. The resulting asymmetry can be seen in Figure 10, which
shows the output for the processor operating directly from the vidicon and typical data.
At these rates, the dynamic range is equivalent to approximately 16 gray levels. The local
averaging and edge detection arc as effective at these rates as with the stored data experi-
ment. The unsharp masking shown provides a similar effect to the Sobel edge detection but

Figure 8. Example of processor performance operating a
stored data at 10-kHz rates.
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Figure 9. Schematic of recal-time image processing system.

* This device was furnished by Fairchild Imaging System as part of a subcontract for the
Night Vision Laboratories Contract No. DAAK70-77-C-0216.
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EDGE DETECTION

UNSHARP MASKING BINARIZATION

Figure 10. Performance of processor at real-time data rates.

provides some gray levels at reduced dynamic range. This can be important to limited band-
width systems. The binarizer is adjusted to effectively produce a silhouette of the dark
areasz, which is useful in higher level processing for target identification, for example.

lhe binarization algorithm is inherently unstable in that the center pixel and the surround-
ing mean typically have very similar intensities. 1In a uniform background, for example,

the mean and center are identical, which results in binarizing only the thermal noise. In
our experiments, this stability is removed by a varying offset at the comparator.

5. Conclusions

The results shown here indicate the feasibility of using a single integrated circuit to
perform some of the preprocessing functions of use in higher-level or symbolic processing.
Further, it is evidently fecasible to operate at real-time rates and perform the computations
without storage. Our work is continuing in an effort to combine these low-level operations
to adaptive processing and the higher-level manipulation.
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